Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin
-
摘要: 我国深部(层)(以下均指埋深大于2 000 m)煤层气资源丰富,勘探开发潜力巨大。2019年以来,鄂尔多斯盆地东缘(鄂东缘)大宁–吉县区块逐步进入深部(层)煤层气“规模勘探+先导试验”阶段,直井日产气量突破2×104 m3,水平井日产气量突破10×104 m3,这一标志性成果既突破传统意义上煤层气勘探开发领域的深度禁区,使得煤层气总资源量有望在30.05×1012 m3基础上大幅度增加,又将成为“十四五”乃至长远煤层气产业实现规模发展的重点勘探开发方向。面对以地面传统钻井、压裂(储层改造)、排采(举升)、集输和数智化等为主体技术及开发方式的迫切需求,鄂东缘深部(层)煤层气面临许多基础理论和技术难点,包括:成藏机理和赋存规律,有利区优选方法;高产主控因素及控制机理,解吸–渗流机理与开发规律,“地质–工程一体化”开发甜点分类评价标准,关键开发指标确定方法和依据;低成本优快高效钻完井技术,水平井水泥环高效密封控制技术;煤岩缝网形成机理,低成本、高效、环保压裂入井材料,改造后缝网孔渗特征、流动规律;高盐、高水气比、出砂等工况下排采及举升控制技术;高效节能集输、规模开发所需复杂集输管网稳定运行理论与实践体系;数智气田建设和人工智能应用研究。在系统梳理上述难点基础上,针对性地提出勘探地质、开发地质、钻完井、压裂(储层改造)、排采(举升)、集输与数智化等理论与技术的研究方向和具体对策,这一成果不仅对加快鄂东缘深部(层)煤层气规模上产具有重要的指导意义,而且对国内外深部(层)煤层气规模开发具有很强的引领和示范作用,也可有力推动煤层气产业高质量发展、支撑实现国家碳达峰碳中和目标与保障清洁能源安全。Abstract: Deep coalbed methane (CBM) resources (hereinafter referred to the CBM resources with the buried depth greater than 2 000 m) are abundant in China and have great potential in exploration and development. Since 2019, Daning‒Jixian block in the eastern edge of Ordos Basin has entered the stage of "scaled exploration + pilot test" of deep CBM, with the daily gas production exceeding 2 × 104 m3 in vertical wells and 10 × 104 m3 in horizontal wells. This remarkable achievement has broken through the traditional depth limitation in CBM exploration and development. Thus, the total resource of CBM is expected to increase significantly on the basis of 30.05 × 1012 m3, and the deep CBM resource will become a key direction of exploration and development for the scaled development of CBM industry in the "fourteenth five year plan" and even in long term. In view of the urgent needs of development mode with traditional surface drilling, fracturing (reservoir stimulation), drainage and production (lifting), gathering and digital intelligence as the main technologies, many basic theoretical and technical difficulties are faced in the development of the deep CBM in the eastern edge of Ordos Basin: the optimization method of favorable areas based on accumulation mechanism and occurrence state, the main control factors and control mechanism of high yield, the desorption-seepage mechanism and development law, the evaluation standard of development dessert with “geology-engineering integration”, and the determination method and basis of key development indicators, the low-cost, fast and efficient drilling and completion technology, the efficient cement sheath sealing control technology for horizontal wells, the formation mechanism of deep coal rock fracture network, the low-cost, efficient and environmentally friendly fracturing materials, the porous and permeable characteristics and flow law of fracture network after fracturing, the drainage and lifting control technology under the working conditions of high salinity, high water-gas ratio and sand production, the theory and practice system for stable operation of complex gathering pipeline network required for the efficient and energy-saving gathering and the scaled development, the digital and intelligent construction of gas field, and the application research of artificial intelligence. On the basis of systematically sorting out the above difficulties, the research direction and specific countermeasures were put forward for the theory and technology on exploration geology, development geology, well drilling and completion, fracturing (reservoir stimulation), drainage production (lifting), gathering and digital intelligence. This achievement not only has important guiding significance for accelerating the scaled production of deep CBM in the eastern edge of Ordos Basin, but also has a strong leading and demonstration role for the scaled development of deep CBM at home and abroad. In addition, it could also effectively promote the high-quality development of CBM industry, and support the realization of the national goal of "carbon peaking and carbon neutrality", so as to ensure the security of clean energy.
-
表 1 大宁−吉县区块深部(层)与中深部(层)8号煤层地质−气藏特征对比[4]
Table 1 Comparison of geological and gas reservoir characteristics of deep and middle-deep No.8 coal seam in Daning‒Jixian block[4]
地质气藏条件 中深部(层)8号煤层 深部(层)8号煤层 深部(层)煤层特征 深部(层)相比中深
部(层)的定量关系埋深/m 1 000~1 500 2 000~2 520 埋深更深 煤层厚度/m 平均5.49 平均7.8 厚度相对更大 含气量/(m3·t−1) 6.14~20.84,平均12.36 18~26,平均25.2 含气量更高 2倍 孔隙率/% 平均3.98 平均3.13 均属特低孔隙率 渗透率/10−3 μm2 0.005~3.01/1.51(注入/压降试井) 0.053~0.054/0.0535(注入/
压降试井)渗透率更低,属特低渗透率
储层低2个数量级 割理/裂缝 面割理16~18条/5 cm;
端割理
12条/5 cm,
呈网状面割理6~10条/5 cm;
端割理7~15条/5 cm,
割理呈线状、网状面割理相对较少,端割理相当 含气饱和度/% 49.6~86.2/69.5 97.99~100/98.95 含气饱和度更高 1.4倍 甲烷体积分数/% 92.82~98.64/96.48 94.81~96.65/95.43 甲烷占比相当 等温吸附特征 VL平均24.9 m3/t,pL平均2.09 MPa VL平均28.29 m3/t,
pL平均3.06 MPaVL、pL,吸附能力强 宏观煤岩类型 半亮煤、半暗煤为主 光亮煤、半亮煤为主 光亮煤、半亮煤为主 煤体结构 碎裂、碎粒煤为主 原生结构煤为主 原生结构煤为主 煤岩显微组分 镜质组为主,体积分数60% 镜质组为主,
体积分数85.5%镜质组含量更高 1.4倍 镜质体平均反射率/% 2.2 2.7 相对较高 1.2倍 煤储层压力/MPa 7.64~7.66 17.02~20.74 煤储层压力更高 2.6倍 地层压力系数 0.61~0.94 0.902~0.936 系数相对更高 煤储层温度/℃ 30.50~51.19 61.3~73.4 温度更高 1.5倍 顶底板特征 顶板以灰岩为主,
底板以泥岩为主,含水性弱顶板以灰岩为主,底板以
泥岩为主,含水性弱相当 水文地质条件 承压区–弱径流区 承压区 水动力条件更弱 地层水特征 水型为CaCl2–NaHCO3型,
矿化度4 300~12 700 mg/L水型CaCl2型,矿化度
40 158~332 006 mg/L矿化度更高 20倍 甲烷碳同位素
δ13CPDB/‰−38.8 −20.9 相对更高 表 2 吉深6-7平01井水质分析结果
Table 2 Analysis results on quality of produced water from JS6-7P01
检测项目 结果/(mg·L−1) 检测项目 结果/(mg·L−1) K+ 572.00 Cl− 35 500 Na+ 35 400.00 SO4 2− 11.42 Ca2+ 16 050.00 NO2 − 4.29 Mg2+ 5 100.00 NO3 − 26.55 Fe3+ 2.04 PO4 3− 2.09 Al3+ − HCO3 − 579.50 NH4 + 1 770.12 CO3 2− 0 阳离子总值 58 894.16 阴离子总值 36 123.85 总硬度 21 150.00 总矿化度 223 913.00 总碱度 475.50 游离CO2 192.20 COD(化学需氧量) 20 000.00 侵蚀CO2 0 可溶性SiO2 300.70 表 3 大宁−吉县区块深部(层)煤层气水平井钻完钻情况
Table 3 Drilling and completion of deep CBM horizontal wells in Daning‒Jixian block
井号 水平段/
m钻遇率/
%钻井周期/d 完井周期/d 完钻井深/m 大吉−平25-3H 902 93.10 99.29 112.69 3 422 吉深−平01 1 270 61.47 85.79 96.87 3 812 吉深−平02 1 285 74.20 54.21 74.88 3 745 吉深6-7平01 1 000 94.80 30.83 34.40 3 601 -
[1] 徐凤银,闫霞,林振盘,等. 我国煤层气高效开发关键技术研究进展与发展方向[J]. 煤田地质与勘探,2022,50(3):1−14.. doi: 10.12363/issn.1001-1986.21.12.0736XU Fengyin,YAN Xia,LIN Zhenpan,et al. Research progress and development direction of key technologies for efficient coalbed methane development in China[J]. Coal Geology & Exploration,2022,50(3):1−14.. doi: 10.12363/issn.1001-1986.21.12.0736 [2] 杨秀春,徐凤银,王虹雅,等. 鄂尔多斯盆地东缘煤层气勘探开发历程与启示[J]. 煤田地质与勘探,2022,50(3):30−41.. doi: 10.12363/issn.1001-1986.21.12.0823YANG Xiuchun,XU Fengyin,WANG Hongya,et al. Exploration and development process of coalbed methane in eastern margin of Ordos Basin and its enlightenment[J]. Coal Geology & Exploration,2022,50(3):30−41.. doi: 10.12363/issn.1001-1986.21.12.0823 [3] 徐凤银,王勃,赵欣,等. “双碳”目标下推进中国煤层气业务高质量发展的思考与建议[J]. 中国石油勘探,2021,26(3):9−18.XU Fengyin,WANG Bo,ZHAO Xin,et al. Thoughts and suggestions on promoting high quality development of China’s CBM business under the goal of“double carbon”[J]. China Petroleum Exploration,2021,26(3):9−18. [4] 闫霞,徐凤银,聂志宏,等. 深部微构造特征及其对煤层气高产“甜点区”的控制:以鄂尔多斯盆地东缘大吉地区为例[J]. 煤炭学报,2021,46(8):2426−2439.. doi: 10.13225/j.cnki.jccs.CB21.0751YAN Xia,XU Fengyin,NIE Zhihong,et al. Microstructure characteristics of Daji area in east Ordos Basin and its control over the high yield dessert of CBM[J]. Journal of China Coal Society,2021,46(8):2426−2439.. doi: 10.13225/j.cnki.jccs.CB21.0751 [5] 聂志宏,时小松,孙伟,等. 大宁–吉县区块深层煤层气生产特征与开发技术对策[J]. 煤田地质与勘探,2022,50(3):193−200.. doi: 10.12363/issn.1001-1986.21.12.0818NIE Zhihong,SHI Xiaosong,SUN Wei,et al. Production characteristics of deep coalbed methane gas reservoirs in Daning–Jixian block and its development technology countermeasures[J]. Coal Geology & Exploration,2022,50(3):193−200.. doi: 10.12363/issn.1001-1986.21.12.0818 [6] 李曙光,王红娜,徐博瑞,等. 大宁–吉县区块深层煤层气井酸化压裂产气效果影响因素分析[J]. 煤田地质与勘探,2022,50(3):165−172.. doi: 10.12363/issn.1001-1986.21.12.0800LI Shuguang,WANG Hongna,XU Borui,et al. Influencing factors on gas production effect of acid fractured CBM wells in deep coal seam of Daning–Jixian block[J]. Coal Geology & Exploration,2022,50(3):165−172.. doi: 10.12363/issn.1001-1986.21.12.0800 [7] 刘洪林,王红岩,李景明. 利用碳封存技术开发我国深层煤层气资源的思考[J]. 特种油气藏,2006,13(4):6−9.. doi: 10.3969/j.issn.1006-6535.2006.04.002LIU Honglin,WANG Hongyan,LI Jingming. Technology of CO2 sequestration for developing deep coal bed methane in China[J]. Special Oil & Gas Reservoirs,2006,13(4):6−9.. doi: 10.3969/j.issn.1006-6535.2006.04.002 [8] 孙钦平,赵群,姜馨淳,等. 新形势下中国煤层气勘探开发前景与对策思考[J]. 煤炭学报,2021,46(1):65−76.. doi: 10.13225/j.cnki.jccs.2020.1579SUN Qinping,ZHAO Qun,JIANG Xinchun,et al. Prospects and strategies of CBM exploration and development in China under the new situation[J]. Journal of China Coal Society,2021,46(1):65−76.. doi: 10.13225/j.cnki.jccs.2020.1579 [9] 杨震,孔令峰,孙万军,等. 油气开采企业开展深层煤炭地下气化业务的前景分析[J]. 天然气工业,2015,35(8):99−105.. doi: 10.3787/j.issn.1000-0976.2015.08.015YANG Zhen,KONG Lingfeng,SUN Wanjun,et al. Prospects of underground deep–zone coal gasification performed by oil and gas production enterprises[J]. Natural Gas Industry,2015,35(8):99−105.. doi: 10.3787/j.issn.1000-0976.2015.08.015 [10] 秦勇,申建,王宝文,等. 深部煤层气成藏效应及其耦合关系[J]. 石油学报,2012,33(1):48−54.. doi: 10.7623/syxb201201006QIN Yong,SHEN Jian,WANG Baowen,et al. Accumulation effects and coupling relationship of deep coalbed methane[J]. Acta Petrolei Sinica,2012,33(1):48−54.. doi: 10.7623/syxb201201006 [11] 秦勇,申建. 论深部煤层气基本地质问题[J]. 石油学报,2016,37(1):125−136.QIN Yong,SHEN Jian. On the fundamental issues of deep coalbed methane geology[J]. Acta Petrolei Sinica,2016,37(1):125−136. [12] 李辛子,王运海,姜昭琛,等. 深部煤层气勘探开发进展与研究[J]. 煤炭学报,2016,41(1):24−31.LI Xinzi,WANG Yunhai,JIANG Zhaochen,et al. Progress and study on exploration and production for deep coalbed methane[J]. Journal of China Coal Society,2016,41(1):24−31. [13] 申鹏磊,吕帅锋,李贵山,等. 深部煤层气水平井水力压裂技术:以沁水盆地长治北地区为例[J]. 煤炭学报,2021,46(8):2488−2500.. doi: 10.13225/j.cnki.jccs.CB21.0683SHEN Penglei,LYU Shuaifeng,LI Guishan,et al. Hydraulic fracturing technology for deep coalbed methane horizontal wells:A case study in north Changzhi area of Qinshui Basin[J]. Journal of China Coal Society,2021,46(8):2488−2500.. doi: 10.13225/j.cnki.jccs.CB21.0683 [14] 高玉巧,李鑫,何希鹏,等. 延川南深部煤层气高产主控地质因素研究[J]. 煤田地质与勘探,2021,49(2):21−27.. doi: 10.3969/j.issn.1001-1986.2021.02.003GAO Yuqiao,LI Xin,HE Xipeng,et al. Study on the main controlling geological factors of high yield deep CBM in southern Yanchuan block[J]. Coal Geology & Exploration,2021,49(2):21−27.. doi: 10.3969/j.issn.1001-1986.2021.02.003 [15] 姚红生,陈贞龙,郭涛,等. 延川南深部煤层气地质工程一体化压裂增产实践[J]. 油气藏评价与开发,2021,11(3):291−296.. doi: 10.13809/j.cnki.cn32-1825/te.2021.03.003YAO Hongsheng,CHEN Zhenlong,GUO Tao,et al. Stimulation practice of geology−engineering integration fracturing for deep CBM in Yanchuannan field[J]. Petroleum Reservoir Evaluation and Development,2021,11(3):291−296.. doi: 10.13809/j.cnki.cn32-1825/te.2021.03.003 [16] 康永尚,皇甫玉慧,张兵,等. 含煤盆地深层“超饱和”煤层气形成条件[J]. 石油学报,2019,40(12):1426−1438.. doi: 10.7623/syxb201912002KANG Yongshang,HUANGFU Yuhui,ZHANG Bing,et al. Formation conditions for deep oversaturated coalbed methane in coal−bearing basins[J]. Acta Petrolei Sinica,2019,40(12):1426−1438.. doi: 10.7623/syxb201912002 [17] 杨敏芳,孙斌,鲁静,等. 准噶尔盆地深、浅层煤层气富集模式对比分析[J]. 煤炭学报,2019,44(增刊2):601−609.. doi: 10.13225/j.cnki.jccs.2019.0100YANG Minfang,SUN Bin,LU Jing,et al. Comparative analysis on the enrichment patterns of deep and shallow CBM in Junggar basin[J]. Journal of China Coal Society,2019,44(Sup.2):601−609.. doi: 10.13225/j.cnki.jccs.2019.0100 [18] 张鹏豹,肖宇航,朱庆忠,等. 深层倾斜风化煤层特征及其对煤层气开发的影响:以河北大城区块南部为例[J]. 天然气工业,2021,41(11):86−96.. doi: 10.3787/j.issn.1000-0976.2021.11.009ZHANG Pengbao,XIAO Yuhang,ZHU Qingzhong,et al. Characteristics of deep inclined weathered coalbed reservoir and its influence on coalbed methane development:A case study of the southern Dacheng block of Hebei Province[J]. Natural Gas Industry,2021,41(11):86−96.. doi: 10.3787/j.issn.1000-0976.2021.11.009 [19] 陶传奇. 鄂尔多斯盆地东缘临兴地区深部煤层气富集成藏规律研究[D]. 北京: 中国矿业大学(北京), 2019.TAO Chuanqi. Deep coalbed methane accumulation and reservoiring in Linxin area, eastern Ordos Basin, China[D]. Beijing: China University of Mining & Technology (Beijing), 2019. [20] 陈刚,秦勇,胡宗全,等. 准噶尔盆地白家海凸起深部含煤层气系统储层组合特征[J]. 煤炭学报,2016,41(1):80−86.. doi: 10.13225/j.cnki.jccs.2015.9001CHEN Gang,QIN Yong,HU Zongquan,et al. Characteristics of reservoir assemblage of deep CBM–bearing system in Baijiahai dome of Junggar Basin[J]. Journal of China Coal Society,2016,41(1):80−86.. doi: 10.13225/j.cnki.jccs.2015.9001 [21] 房大志,程泽虎,李佳欣. 渝东南地区超深层煤层气高效压裂技术及精细排采制度研究与实践:以NY1井为例[J]. 煤田地质与勘探,2022,50(5):50−56.. doi: 10.12363/issn.1001-1986.21.08.0437FANG Dazhi,CHENG Zehu,LI Jiaxin. Efficient fracturing technology and fine drainage system of ultra–deep coalbed methane in southeast Chongqing:A case study of NY1 well[J]. Coal Geology & Exploration,2022,50(5):50−56.. doi: 10.12363/issn.1001-1986.21.08.0437 [22] 郭绪杰,支东明,毛新军,等. 准噶尔盆地煤岩气的勘探发现及意义[J]. 中国石油勘探,2021,26(6):38−49.. doi: 10.3969/j.issn.1672-7703.2021.06.003GUO Xujie,ZHI Dongming,MAO Xinjun,et al. Discovery and significance of coal measure gas in Junggar Basin[J]. China Petroleum Exploration,2021,26(6):38−49.. doi: 10.3969/j.issn.1672-7703.2021.06.003 [23] 李勇,孟尚志,吴鹏,等. 煤层气成藏机理及气藏类型划分:以鄂尔多斯盆地东缘为例[J]. 天然气工业,2017,37(8):22−30.. doi: 10.3787/j.issn.1000-0976.2017.08.003LI Yong,MENG Shangzhi,WU Peng,et al. Accumulation mechanisms and classification of CBM reservoir types:A case study from the eastern margin of the Ordos Basin[J]. Natural Gas Industry,2017,37(8):22−30.. doi: 10.3787/j.issn.1000-0976.2017.08.003 [24] 马行陟,宋岩,柳少波,等. 鄂尔多斯盆地东缘韩城地区煤层气地球化学特征及其成因[J]. 天然气工业,2011,31(4):17−20.. doi: 10.3787/j.issn.1000-0976.2011.04.004MA Xingzhi,SONG Yan,LIU Shaobo,et al. Origins and geochemical characteristics of coalbed methane in Hancheng,eastern Ordos Basin[J]. Natural Gas Industry,2011,31(4):17−20.. doi: 10.3787/j.issn.1000-0976.2011.04.004 [25] 秦勇. 煤系气聚集系统与开发地质研究战略思考[J]. 煤炭学报,2021,46(8):2387−2399.. doi: 10.13225/j.cnki.jccs.cb21.0719QIN Yong. Strategic thinking on research of coal measure gas accumulation system and development geology[J]. Journal of China Coal Society,2021,46(8):2387−2399.. doi: 10.13225/j.cnki.jccs.cb21.0719 [26] 李勇,汤达祯,孟尚志,等. 鄂尔多斯盆地东缘煤储层地应力状态及其对煤层气勘探开发的影响[J]. 矿业科学学报,2017,2(5):416−424.. doi: 10.19606/j.cnki.jmst.2017.05.002LI Yong,TANG Dazhen,MENG Shangzhi,et al. The in−situ stress of coal reservoirs in east margin of Ordos Basin and its influence on coalbed methane development[J]. Journal of Mining Science and Technology,2017,2(5):416−424.. doi: 10.19606/j.cnki.jmst.2017.05.002 [27] 李勇,许卫凯,高计县,等. “源–储–输导系统”联控煤系气富集成藏机制:以鄂尔多斯盆地东缘为例[J]. 煤炭学报,2021,46(8):2440−2453.LI Yong,XU Weikai,GAO Jixian,et al. Mechanism of coal measure gas accumulation under integrated control of“source reservoir–transport system”:A case study from east margin of Ordos Basin[J]. Journal of China Coal Society,2021,46(8):2440−2453. [28] 闫霞,温声明,聂志宏,等. 影响煤层气开发效果的地质因素再认识[J]. 断块油气田,2020,27(3):375−380.YAN Xia,WEN Shengming,NIE Zhihong,et al. Re−recognition of geological factors affecting coalbed methane development effect[J]. Fault−Block Oil & Gas Field,2020,27(3):375−380. [29] 闫霞,徐凤银,张雷,等. 微构造对煤层气的控藏机理与控产模式[J]. 煤炭学报,2022,47(2):893−905.YAN Xia,XU Fengyin,ZHANG Lei,et al. Reservoir−controlling mechanism and production−controlling patterns of microstructure to coalbed methane[J]. Journal of China Coal Society,2022,47(2):893−905. [30] 李贵红,张泓. 鄂尔多斯盆地东缘煤层气藏演化及其差异分析[J]. 中国煤层气,2020,17(3):3−8.LI Guihong,ZHANG Hong. Evolution history of coalbed methane reservoir and its difference in eastern Ordos Basin[J]. China Coalbed Methane,2020,17(3):3−8. [31] 沈玉林,秦勇,申建,等. 鄂尔多斯盆地东缘上古生界煤系叠置含气系统发育的沉积控制机理[J]. 天然气工业,2017,37(11):29−35.. doi: 10.3787/j.issn.1000-0976.2017.11.004SHEN Yulin,QIN Yong,SHEN Jian,et al. Sedimentary control mechanism of the superimposed gas bearing system development in the Upper Palaeozoic coal measures along the eastern margin of the Ordos Basin[J]. Natural Gas Industry,2017,37(11):29−35.. doi: 10.3787/j.issn.1000-0976.2017.11.004 -