基于改进U-Net++网络的地震数据高精度重建

High-precision reconstruction of seismic data based on improved U-Net++

  • 摘要:
    目的 针对常规重建方法对连续缺失地震数据重建效果不佳,影响后续处理精度的不足,在U-Net++网络基础上,通过引入卷积注意力机制模块(convolutional block attention module, CBAM),提出了一种深度学习网络CU-Net++。
    方法 U-Net++网络的嵌套式结构中每个子U-Net网络的独立解码器,可在缺失数据重建中充分利用不同深度的信息;长短跳跃连接能有效增强网络对数据多尺度特征的提取能力。CU-Net++网络的核心是将可增强地震波细节和边缘信息学习能力的CBAM引入到U-Net++网络,以增强复杂地震波特征的识别和捕捉能力。通过模拟数据和实测数据重建测试,从F-K谱、残差剖面、单道波形、平均绝对误差、信噪比、峰值信噪比等方面,详细对比分析了CU-Net++、U-Net++、CU-Net、U-Net网络和曲波域凸集投影(POCS)对缺失地震数据的重建效果。
    结果和结论 CU-Net++网络的各项指标表现最优,其重建误差最低,平均绝对误差相较于U-Net++网络降低约51%,信噪比和峰值信噪比分别提升5.87 dB和5.87 dB;CU-Net++网络可高精度重建连续缺失比例不超过12%的地震数据。

     

    Abstract:
    Objective Conventional reconstruction methods are insufficient for the reconstruction of seismic data with missing consecutive traces, producing a negative impact on subsequent processing accuracy. Hence, this study proposed CU-Net++, a deep learning network based on the U-Net++ architecture combined with the convolutional block attention module (CBAM).
    Methods During the reconstruction of missing data, the independent decoder for each sub-U-Net in the nested U-Net++ architecture enables the utilization of information from different depths. The long and short skip connections can effectively enhance the network's capability to extract multi-scale features from data. The core innovation of CU-Net++ is the introduction of CBAM, which can enhance the capacity to learn about seismic wave details and edge information, into the U-Net++. This helps improve the network's ability to identify and capture complex seismic wave characteristics. Through the reconstruction tests of simulated and measured data, this study presented a comparative analysis of the reconstruction effects for missing seismic data of the CU-Net++, U-Net++, CU-Net, U-Net, and curvelet-domain projection onto convex sets (POCS) methods from the perspective of F-K spectrum, residual profile, single-trace waveform, mean absolute error (MAE), signal-to-noise ratio (SNR), and peak signal-to-noise ratio (PSNR).
    Results and Conclusions CU-Net++ delivered the optimum overall performance across various assessment metrics, yielding the lowest reconstruction error. Compared to U-Net++, it reduced the MAE by approximately 51% and improved the SNR and PSNR by 5.87 dB each. Notably, CU-Net++ enables high-precision construction of seismic data with a proportion of consecutively missing traces not exceeding 12%.

     

/

返回文章
返回