采动作用下复合关键层协同破断与伏岩能量演化特征

Synergistic fracture of composite key strata and energy evolution characteristics of overlying strata under mining action

  • 摘要:
    目的 探究复合关键层协同破断的响应特性及其能量演变机制,为煤层围岩灾变事故的防控提供理论支撑,对保障井下安全开采具有关键意义。
    方法 采用物理相似模拟、数值计算与理论分析相结合的研究方法,在分析复合关键层破断失稳特征基础之上,研究采动作用下伏岩应变能、重力势能的聚集与释放规律,揭示关键层破断激励作用下伏岩能量的演变机理。
    结果 在复合关键层工作面开采中,低位、高位关键层之间的破断运动存在相互制约、相互影响的作用关系,是造成该类煤层矿压显现剧烈的内在原因。工作面开挖后,低位关键层的瞬时破断,会对上覆高位关键层形成瞬时卸荷效应;而高位关键层的瞬时破断,则会对低位关键层形成动载冲击作用,导致采动作用下单一关键层形成切落、回转失稳,复合关键层形成协同回转失稳与整体切落两种破断模式,造成对应情况下伏岩能量的聚集与释放特征存在显著差异。当低位关键层发生回转或切落失稳时,采场伏岩释放的弹性应变能基本一致,但重力势能呈现后者大于前者的分布特征,促使伏岩产生“低频次-高能量”微震事件;低位、高位关键层协同破断后,采场煤岩消耗的能量为两者释放能量叠加之和,且伏岩释放的重力势能大于弹性应变能。当采场低位、高位关键层发生整体切落失稳后,采场伏岩释放的重力势能是煤岩消耗能量的主要来源,其对工作面的动力扰动强度显著高于单一关键层破断情况,造成复合关键层工作面形成大、小周期来压现象。
    结论 复合关键层工作面矿压剧烈显现的本质是高低位关键层互馈破断作用,煤矿井下防控核心应切断低位与高位关键层的能量叠加路径,通过微震监测、支架工作阻力监测等分析预判破断模式,采取差异化、前置性干预措施,变被动支护为主动能量管控,阻断复合关键层巨量重力势能及应变能叠加的集中释放,从根源上缓解大、小周期来压引发的剧烈动力扰动。

     

    Abstract: Revealing the synergistic fracture response characteristics and energy evolution mechanism of composite key strata constitutes the theoretical foundation for preventing catastrophic accidents in coal seam surrounding rocks. A combination of physical similarity simulation, numerical calculation, and theoretical analysis is employed to investigate the fracture and the instability characteristics of composite key strata. On this basis, the aggregation and release patterns of overburden strain energy and gravitational potential energy under mining-induced action are examined, and the evolution mechanism of overburden energy under the excitation of key strata fracturing is elucidated. During the mining of working faces with composite key strata, the fracturing and movement of lower and upper key strata mutually restrict and influence each other, which is the intrinsic cause of severe mine pressure manifestations in such coal seams. After excavation, the instantaneous fracture of the lower key stratum produces an unloading effect on the overlying upper key stratum, whereas the instantaneous fracture of the upper key stratum imposes an impact effect on the lower key stratum. The instantaneous fracture of the high-level key stratum will form a dynamic load impact on the low-level key stratum, resulting in the formation of cutting and rotary instability of a single key stratum under mining, and the formation of synergistic rotary instability and overall cutting of the composite key stratum. There are two fracture modes, resulting in significant differences in the energy accumulation and release characteristics of overlying strata under corresponding conditions. Among them, when the low key stratum rotates and cuts off, the elastic strain energy released by the overlying strata of the stope is basically the same, but the gravitational potential energy shows the distribution characteristics that the latter is greater than the former, which promotes the overlying strata to produce 'low frequency-high energy' microseismic events. After the synergistic fracture of the low and high key strata, the energy consumed by the coal and rock in the stope is the sum of the energy released .

     

/

返回文章
返回