留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤层顶板导水裂缝带高度综合探查技术

李超峰 虎维岳 王云宏 刘英锋 周麟晟

李超峰, 虎维岳, 王云宏, 刘英锋, 周麟晟. 煤层顶板导水裂缝带高度综合探查技术[J]. 煤田地质与勘探, 2018, 46(1): 101-107. doi: 10.3969/j.issn.1001-1986.2018.01.018
引用本文: 李超峰, 虎维岳, 王云宏, 刘英锋, 周麟晟. 煤层顶板导水裂缝带高度综合探查技术[J]. 煤田地质与勘探, 2018, 46(1): 101-107. doi: 10.3969/j.issn.1001-1986.2018.01.018
LI Chaofeng, HU Weiyue, WANG Yunhong, LIU Yingfeng, ZHOU Linsheng. Comprehensive detection technique for coal seam roof water flowing fractured zone height[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(1): 101-107. doi: 10.3969/j.issn.1001-1986.2018.01.018
Citation: LI Chaofeng, HU Weiyue, WANG Yunhong, LIU Yingfeng, ZHOU Linsheng. Comprehensive detection technique for coal seam roof water flowing fractured zone height[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(1): 101-107. doi: 10.3969/j.issn.1001-1986.2018.01.018

煤层顶板导水裂缝带高度综合探查技术

doi: 10.3969/j.issn.1001-1986.2018.01.018
基金项目: 

国家重点研发计划资助项目(2017YFC0804106)

详细信息
    第一作者:

    李超峰,1983年生,男,陕西彬县人,博士研究生,从事水文地质及矿井水害防治技术研究.E-mail:lichaofeng@cctegxian.com

  • 中图分类号: TD741

Comprehensive detection technique for coal seam roof water flowing fractured zone height

Funds: 

The National Key Research and Development Program of China(2017YFC0804106)

  • 摘要: 新建矿井应进行顶板"两带"实测。采用井下上仰钻孔注水测漏法、井-地联合微震监测法以及UDEC软件数值模拟,综合探查高家堡矿井首采面顶板导水裂缝带发育高度。利用这3种方法获得的工作面停采线附近的导水裂缝带高度数值基本一致,分别为88.03 m、86.54 m和87.00 m,与实际情况相符合。与地面钻孔冲洗液法或井下上仰钻孔注水测漏法探查结果结合起来,井-地联合微震监测具有突出优势,可实现煤层顶板覆岩破坏与变形的时-空动态四维监测,是研究顶板"两带"发育高度及其变化规律的重要方法。

     

  • [1] 国家煤矿安全监察局. 煤矿防治水规定释义[M]. 徐州:中国矿业大学出版社,2009.
    [2] 虎维岳. 矿山水害防治理论与方法[M]. 北京:煤炭工业出版社,2005.
    [3] 许家林. 岩层采动裂隙演化规律与应用[M]. 徐州:中国矿业大学出版社,2016.
    [4] 白利民,尹尚先,李文. 综采一次采全高顶板导水裂缝带发育高度的计算公式及适用性分析[J]. 煤田地质与勘探,2013, 41(5):36-39.

    BAI Limin,YIN Shangxian,LI Wen. Calculation formula of water conducting zone height in roof for fully mechanized mining and its adaptability analysis[J]. Coal Geology & Exploration, 2013,41(5):36-39.
    [5] 刘英锋,郭小铭. 导水裂缝带部分波及顶板含水层条件下涌水量预测[J]. 煤田地质与勘探,2016,44(5):97-101.

    LIU Yingfeng,GUO Xiaoming. Prediction of water inflow in roof aquifer affected by water-flowing fracture zone[J]. Coal Geology & Exploration,2016,44(5):97-101.
    [6] 武强,赵苏启,董书宁,等. 煤矿防治水手册[M]. 北京:煤炭工业出版社,2013.
    [7] 王双美. 导水裂缝带高度研究方法概述[J]. 水文地质工程地质, 2006,33(5):126-128.

    WANG Shuangmei. A brief review of the methods determining the height of permeable fracture zone[J]. Hydrogeology & Engineering Geology,2006,33(5):126-128.
    [8] 吕玉广,张雁. 国内导水裂缝带研究现状及发展趋势[J]. 煤矿现代化,2013(2):101-104.

    LYU Yuguang,ZHANG Yan. Research status and development trend of water-flowing fractured zone[J]. Coal Mine Modernization,2013(2):101-104.
    [9] 张唤兰,朱光明,王保利. 微地震震源定位中目标函数的研究与应用[J]. 煤田地质与勘探,2015,43(6):105-108.

    ZHANG Huanlan,ZHU Guangming,WANG Baoli. Study and application of objective function in microseismic source location[J]. Coal Geology & Exploration,2015,43(6):105-108.
    [10] 段建华,程建远,王云宏,等. 基于STA/LTA方法的微地震事件自动识别技术[J]. 煤田地质与勘探,2015,43(1):76-80.

    DUAN Jianhua,CHENG Jianyuan,WANG Yunhong,et al. Automatic identification technology of microseismic event based on STA/LTA algorithm[J]. Coal Geology & Exploration,2015, 43(1):76-80.
    [11] 余学义,王金东,赵兵朝. 机械化开采条件下导水裂缝带发育高度研究[J]. 煤炭工程,2015,47(9):86-89.

    YU Xueyi,WANG Jindong,ZHAO Bingchao. Research on height of water flowing fractured zone under mechanized mining[J]. Coal Engineering,2015,47(9):86-89.
    [12] 邢延团,郑纲,马培智. 井下仰孔注水测漏法探测导水裂缝带高度的研究[J]. 煤田地质与勘探,2004,32(增刊1):186-190.

    XING Yantuan,ZHENG Gang,MA Peizhi. Exploring the water-transmit crevice developing height with injection water leakage in the upward slant hole[J]. Coal Geology & Exploration, 2004,32(S1):186-190.
    [13] 余学义,刘俊,赵兵朝,等. 孟巴矿特厚煤层分层开采覆岩导水裂缝带高度测定[J]. 煤矿安全, 2013, 44(8):169-171.

    YU Xueyi,LIU Jun,ZHAO Bingchao,et al. Determination on the height of slice mining overburden rock water flowing fractured zone of extremely thick coal seams in Barapukuria coal mine of Bangladesh[J]. Safety in Coal Mines,2013,44(8):169-171.
    [14] 余学义,刘俊,王鹏,等. 特厚煤层分层开采导水裂缝带高度探测研究[J]. 中州煤炭,2013(7):4-7.

    YU Xueyi,LIU Jun,WANG Peng,et al. Exploring research on height of water flowing fractured zone of extremely thick coal seams to slice mining[J]. Zhong Zhou Coal,2013(7):4-7.
    [15] 范志胜,程敏. 应用井下仰孔分段注水观测导水断裂带高度[J]. 矿业安全与环保,2010,37(6):75-77.

    FAN Zhisheng,CHENG Min. Using the method of injection water leakage in the upward slant hole to determinate height of water flowing fractured zone[J]. Mining Safety & Environmental Protection,2010,37(6):75-77.
    [16] 李文生,李文,尹尚先. 综采一次采全高顶板导水裂缝带发育高度研究[J]. 煤炭科学技术,2012,40(6):104-107.

    LI Wensheng,LI wen,YIN Shangxian. Study on development height of water flow crack zone in roof above fully mechanized one passing full seam mining face[J]. Coal Science and Technology,2012,40(6):104-107.
    [17] MENDECKI A J. Seismic monitoring in mines[M]. London:Chapman and Hall,1997.
    [18] 郝育喜,李化敏,袁瑞甫,等. 煤柱稳定性的微震监测研究[J]. 煤炭工程,2012,44(11):64-67.

    HAO Yuxi,LI Huamin,YUAN Ruifu,et al. Study on micro seismic monitoring and measuring of coal pillar stability[J]. Coal Engineering,2012,44(11):64-67.
    [19] 吕长国,窦林名,何江,等. 遗留煤柱影响区域微震活动规律研究[J]. 煤炭工程,2011,43(1):78-81.

    LYU Changguo,DOU Linming,HE Jiang,et al. Study on micro seismic activity law of area affected by left coal pillars[J]. Coal Engineering,2011,43(1):78-81.
    [20] 高保彬,高佳佳,袁东升. 基于UDEC的大采高覆岩破裂的模拟与分析[J]. 湖南科技大学学报(自然科学版),2013,28(2):1-6.

    GAO Baobin,GAO Jiajia,YUAN Dongsheng. Simulation and analysis of overlying strata fracture in large mining height top-coal caving face of coal seams based on UDEC[J]. Journal of Hunan University of Science & Technology(Natural Science Edition),2013,28(2):1-6.
    [21] 李振峰,靳晓敏. 应用UDEC进行顶板"三带"范围划分的数值模拟研究[J]. 矿业安全与环保,2015,42(4):21-24.

    LI Zhenfeng,JIN Xiaomin. Numerical simulation research on scope division of "three zones" in roof with UDEC[J]. Mining Safety & Environmental Protection,2015,42(4):21-24.
  • 加载中
计量
  • 文章访问数:  356
  • HTML全文浏览量:  70
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-31
  • 发布日期:  2018-02-25

目录

    /

    返回文章
    返回