白腐真菌预处理对煤厌氧发酵产甲烷的影响

Effect of white rot fungi pretreatment on methane production from anaerobic fermentation of coal

  • 摘要: 为研究白腐真菌预处理对煤厌氧发酵产甲烷的影响,以预处理长焰煤为实验组,未经预处理煤样为对照组,在适宜环境下进行厌氧发酵产气实验。利用重铬酸钾法、紫外分光光度法、扫描电镜等手段对产气过程中的COD(化学需氧量)质量浓度、辅酶F420活性及煤形貌变化等进行阶段性分析。结果表明:实验组与对照组总产气量和碳转化率分别是2 322.0 mL与5.10%、1 330.2 mL与4.70%,且实验组初始产气时间明显提前;实验组降解更为彻底,两者COD值分别是32~176 mg/L与576~609 mg/L;实验组与对照组辅酶F420活性最高值分别为0.011 72 μmol/L和0.007 97 μmol/L,且其活性受TOC(总有机碳)含量和产酸细菌的影响;预处理和产气结束后,实验组煤样表面更加粗糙,微生物吸附位点和吸附量也更多,且有菌簇的形成。实验证实,白腐真菌生物预处理在提高煤厌氧发酵产气量与碳转化率方面具有很强的优越性和可适用性,有利于煤层生物气资源的产业化利用。

     

    Abstract: To investigate the effect of white rot fungi pretreatment on methane production from anaerobic fermentation of coal, fermentation experiments of biogas production were conducted using long flame coal. The coal samples pretreated with white rot fungi were the experimental group(EG), and original untreated coal samples were the control group(CG). The COD(chemical oxygen demand) mass concentration, activity of coenzyme F420, and changes of coal morphology were measured using potassium dichromate method, ultraviolet spectrophotometry, and SEM, respectively. The results showed the following:The total gas production and conversion rate in the EG and CG were 2 322.00 mL and 5.10%, 1 330.20 mL and 4.70%, respectively. Moreover, the hydrolysis stage in the EG was significantly shorter than that in the CG. The COD value in the EG and CG was 32-176 mg/L and 576-609 mg/L, respectively, and the degradation of EG was more thorough. The maximum value of coenzyme F420 in the EG and CG was 0.011 72 μmol/L and 0.007 97 μmol/L, respectively, and its activity was effected by TOC(total organic carbon) content and acid-producing bacteria. At the end of pretreatment and gas produciton, the roughness of the coal surface in the EG was stronger, the adsorption sites and adsorption capacity of microorganisms were also more high, and accompanied by the generation of bacterioflora. This test research demonstrates the advantages and adaptability of biological pretreatment with white rot fungi, which is beneficial to the industrialization utilization of biogas resources in coal.

     

/

返回文章
返回