留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随掘地震实时超前探测系统的试验研究

王季 覃思 吴海 张庆庆 余俊辉 苏晓云

王季, 覃思, 吴海, 张庆庆, 余俊辉, 苏晓云. 随掘地震实时超前探测系统的试验研究[J]. 煤田地质与勘探, 2021, 49(4): 1-7. doi: 10.3969/j.issn.1001-1986.2021.04.001
引用本文: 王季, 覃思, 吴海, 张庆庆, 余俊辉, 苏晓云. 随掘地震实时超前探测系统的试验研究[J]. 煤田地质与勘探, 2021, 49(4): 1-7. doi: 10.3969/j.issn.1001-1986.2021.04.001
WANG Ji, QIN Si, WU Hai, ZHANG Qingqing, YU Junhui, SU Xiaoyun. Experimental study on advanced real time detection system of seismic-while-excavating[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 1-7. doi: 10.3969/j.issn.1001-1986.2021.04.001
Citation: WANG Ji, QIN Si, WU Hai, ZHANG Qingqing, YU Junhui, SU Xiaoyun. Experimental study on advanced real time detection system of seismic-while-excavating[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 1-7. doi: 10.3969/j.issn.1001-1986.2021.04.001

 

“煤矿隐蔽致灾地质因素动态智能探测技术”专题 编者按:
  我国煤炭资源赋存地质条件差、隐蔽致灾地质因素多,迫切需要超前精细查明隐蔽地质异常体的分布状况,保障煤炭安全高效开采。当前,煤矿采区地质勘探、地面三维地震勘探、矿井物探在探测精度、深度与可靠性及时效性方面均不能完全满足煤矿生产的需求,亟需开展煤矿隐蔽致灾地质因素地球物理响应机理的研究,研发地面高精度勘探与井下动态智能探测的新技术与新装备,形成煤矿隐蔽致灾地质因素快速、精细、动态、智能探测技术体系。为了配合煤炭行业在隐蔽致灾地质因素探查的战略需求,交流分享我国在煤炭地质及矿井物探方面取得的最新科技成果,邀请中煤科工集团西安研究院有限公司王季研究员担任客座主编,依托国家重点研发计划项目(2018YFC0807800),开展“煤矿隐蔽致灾地质因素动态智能探测技术”专题策划,本期专题优选8篇稿件刊登,以期促进煤矿企业地质灾害防治的技术进步。

随掘地震实时超前探测系统的试验研究

doi: 10.3969/j.issn.1001-1986.2021.04.001
基金项目: 

国家重点研发计划课题 2018YFC0807804

国家自然科学基金面上项目 41974209

详细信息
    第一作者:

    王季,1977年生,男,陕西西安人,博士,研究员,硕士生导师,研究方向为井下物探技术. E-mail:wangji@cctegxian.com

  • 中图分类号: P631

Experimental study on advanced real time detection system of seismic-while-excavating

  • 摘要: 煤矿智能化建设要求采用智能化地质探测技术在巷道掘进过程中实时完成掘进前方区域的探测和预报。基于在线式矿井地震监测分站构建的随掘地震实时探测系统能够在巷道掘进的同时,采集以掘进机震动为震源的随掘地震数据,通过光纤网络实时传输至地面服务器的数据库内。随掘地震数据处理软件从数据库中获取当前随掘数据,经过筛选、提取虚拟炮集和偏移成像等步骤对掘进前方和侧前方一定区域进行反射槽波成像。为验证系统性能和探测结果的有效性,在正开展掘进作业的山西榆树坡煤矿5106回风巷内安装随掘地震实时探测系统,对该巷道开展为期数个月的随掘跟踪探测试验,探测系统实时采集随掘地震数据并成像,随着掘进长度的增加,每日的探测结果不断显示5106工作面内存在一条隐伏断层,后期的反射槽波探测和钻探工作验证了该断层的存在。试验结果表明,随掘地震实时探测系统能够在掘进过程中不断利用掘进机激发的地震信号对巷道前方和侧前方区域成像,从而在不影响掘进施工的条件下,实现了巷道侧前方地质异常体的连续跟踪探测和实时监测,达到了智能掘进系统对地质探测能力的要求。

     

  • 图  随掘地震探测系统构成

    Fig. 1  Composition of the detection system of seismic-while-excavating

    图  随掘地震数据处理流程

    Fig. 2  Data processing of seismic-while-excavating

    图  5106回风巷随掘地震实时探测系统布置

    Fig. 3  Layout of real time detection system of seismic-while-excavating in air return roadway 5106

    图  原始随掘地震数据

    Fig. 4  Original seismic data while excavating

    图  10月11日随掘虚拟单炮记录

    Fig. 5  The virtual single shot records from seismic-while-excavating data on Oct.11

    图  10月11日随掘数据成像结果

    Fig. 6  Imaging result of seismic-while-excavating data on Oct.11

    图  掘进过程中多日的虚拟炮集及实时成像结果

    Fig. 7  Pulsed seismic-while-excavating data and real time imaging results for days in the tunneling process

    图  5106回风巷反射槽波数据

    Fig. 8  Reflected in-seam wave of the air return roadway 5106

    图  5106回风巷反射槽波成像结果

    Fig. 9  Imaging result of reflected in-seam wave in air return roadway 5106

  • [1] 山西省市场监督管理局. 智能煤矿建设规范: DB14/T 2060-2020[S]. 2020-06-30.

    Shanxi Provincial Market Supervision Administration. Smart coal mine construction specification: DB14/T 2060-2020[S]. 2020-06-30.
    [2] 山西省能源局. 山西省能源局关于印发《全省煤矿智能化建设评定办法(试行)》和《全省煤矿智能化建设基本要求及评分方法(试行)》的通知(晋能源煤技发[2020]596号)[EB/OL]. [2020-12-08]. http://nyj.shanxi.gov.cn/u/cms/www/file/20201217/1608188141799016735

    Shanxi Provincial Energy Administration. Notice of Shanxi energy administration on issuing the "measures for the evaluation of intelligent construction of coal mines in the province(for trial implementation)" and "basic requirements and evaluation methods for intelligent construction of coal mines in the Province(for Trial Implementation)" (Jin Energy Coal Technology Development[2020]No. 596)[EB/OL]. [2020-12-08]. http://nyj.shanxi.gov.cn/u/cms/www/file/20201217/1608188141799016735
    [3] 程久龙, 李飞, 彭苏萍, 等. 矿井巷道地球物理方法超前探测研究进展与展望[J]. 煤炭学报, 2014, 39(8): 1742-1750. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408048.htm

    CHENG Jiulong, LI Fei, PENG Suping, et al. Research progress and development direction on advanced detection in mine roadway working face using geophysical methods[J]. Journal of China Coal Society, 2014, 39(8): 1742-1750. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408048.htm
    [4] 韩德品, 石学锋, 石显新, 等. 煤矿老窑积水巷道直流电法超前探测异常特征研究[J]. 煤炭科学技术, 2019, 47(4): 157-161. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201904026.htm

    HAN Depin, SHI Xuefeng, SHI Xianxin, et al. Study on anomaly characteristics of in-advance DC electric detection of water accumulated roadway in abandoned coal mines[J]. Coal Science and Technology, 2019, 47(4): 157-161. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201904026.htm
    [5] 张平松, 胡雄武. 矿井巷道掘进电磁法超前探测技术研究现状[J]. 煤炭科学技术, 2015, 43(1): 112-115. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201501030.htm

    ZHANG Pingsong, HU Xiongwu. Research status on technology of advanced detection by electromagnetic methods in mine laneway[J]. Coal Science and Technology, 2015, 43(1): 112-115. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201501030.htm
    [6] 刘盛东, 余森林, 王勃, 等. 矿井巷道地震反射波超前探测波场处理方法研究[J]. 煤炭科学技术, 2015, 43(1): 100-103. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201501027.htm

    LIU Shengdong, YU Senlin, WANG Bo, et al. Study on processing method of seismic reflection wave field for advanced detection of mine gateway[J]. Coal Science and Technology, 2015, 43(1): 100-103. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201501027.htm
    [7] 张平松, 刘盛东, 吴健生. 坑道掘进空间反射波超前探测技术[J]. 煤炭学报, 2010, 35(8): 1331-1335. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201008022.htm

    ZHANG Pingsong, LIU Shengdong, WU Jiansheng. Tunnel reflection wave imaging technology and its system during driving space[J]. Journal of China Coal Society, 2010, 35(8): 1331-1335. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201008022.htm
    [8] 王季. 反射槽波探测采空巷道的实验与方法[J]. 煤炭学报, 2015, 40(8): 1879-1885. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201508025.htm

    WANG Ji. Experiment and method of void roadway detection using reflected in-seam wave[J]. Journal of China Coal Society, 2015, 40(8): 1879-1885. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201508025.htm
    [9] 杨辉. 反射槽波在阳煤和顺矿区小构造探查中的应用[J]. 煤田地质与勘探, 2018, 46(增刊1): 37-40. doi: 10.3969/j.issn.1001-1986.2018.S1.008

    YANG Hui. Application of reflected in-seam waves in detecting small structure in Heshun mining area of Yangquan Coal Group[J]. Coal Geology & Exploration, 2018, 46(Sup. 1): 37-40. doi: 10.3969/j.issn.1001-1986.2018.S1.008
    [10] 王一. 矿井反射槽波包络叠加成像方法及其应用[J]. 煤田地质与勘探, 2017, 45(5): 152-154. doi: 10.3969/j.issn.1001-1986.2017.05.026

    WANG Yi. Method and application of reflected in-seam wave enveloped superposition imaging in coal mine[J]. Coal Geology & Exploration, 2017, 45(5): 152-154. doi: 10.3969/j.issn.1001-1986.2017.05.026
    [11] 覃思. 随采地震井-地联合超前探测的试验研究[J]. 煤田地质与勘探, 2016, 44(6): 148-151.. doi: 10.3969/j.issn.1001-1986.2016.06.027

    QIN Si. Underground-surface combined seismic while mining advance detection[J]. Coal Geology & Exploration, 2016, 44(6): 148-151.. doi: 10.3969/j.issn.1001-1986.2016.06.027
    [12] 程建远, 覃思, 陆斌, 等. 煤矿井下随采地震探测技术发展综述[J]. 煤田地质与勘探, 2019, 47(3): 1-9. doi: 10.3969/j.issn.1001-1986.2019.03.001

    CHENG Jianyuan, QIN Si, LU Bin, et al. The development of seismic-while-mining detection technology in underground coal mines[J]. Coal Geology & Exploration, 2019, 47(3): 1-9. doi: 10.3969/j.issn.1001-1986.2019.03.001
    [13] 覃思, 程建远. 煤矿井下随采地震反射波勘探试验研究[J]. 煤炭科学技术, 2015, 43(1): 116-119. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201501031.htm

    QIN Si, CHENG Jianyuan. Experimental study on seismic while mining for underground coal mine reflection survey[J]. Coal Science and Technology, 2015, 43(1): 116-119. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201501031.htm
    [14] 王季, 覃思, 陆斌, 等. 基于掘进机随掘震源的巷道侧前方断层成像技术[J]. 煤炭科学技术, 2021, 49(2): 232-237. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202102027.htm

    WANG Ji, QIN Si, LU Bin, et al. Tomographic imaging technology of front side of roadway based on excavation source of roadheader[J]. Coal Science and Technology, 2021, 49(2): 232-237. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202102027.htm
    [15] 吴海. 矿用本安型微震监测分站技术要求及检验方法研究[J]. 煤炭技术, 2017, 36(12): 211-212. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201712081.htm

    WU Hai. Study on technical requirement and test method of mine intrinsically safe microseismic monitoring substation[J]. Coal Technology, 2017, 36(12): 211-212. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201712081.htm
    [16] 覃思, 崔伟雄, 王伟. 随采地震数据质量定量评价[J]. 煤田地质与勘探, 2019, 47(3): 20-24. doi: 10.3969/j.issn.1001-1986.2019.03.004

    QIN Si, CUI Weixiong, WANG Wei. Quantitative quality evaluation of seismic-while-mining data[J]. Coal Geology & Exploration, 2019, 47(3): 20-24. doi: 10.3969/j.issn.1001-1986.2019.03.004
    [17] 陆斌, 程建远, 胡继武, 等. 采煤机震源有效信号提取及初步应用[J]. 煤炭学报, 2013, 38(12): 2202-2207. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201312021.htm

    LU Bin, CHENG Jianyuan, HU Jiwu, et al. Shearer source signal extraction and preliminary application[J]. Journal of China Coal Society, 2013, 38(12): 2202-2207. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201312021.htm
    [18] 陆斌. 基于地震干涉的回采工作面随采地震成像方法[J]. 煤田地质与勘探, 2016, 44(6): 142-147.. doi: 10.3969/j.issn.1001-1986.2016.06.026

    LU Bin. A seismic while mining method of coal working-face based on seismic interferometry[J]. Coal Geology & Exploration, 2016, 44(6): 142-147.. doi: 10.3969/j.issn.1001-1986.2016.06.026
    [19] 刘强. L1范数约束的随掘地震噪声衰减[J/OL]. 煤炭学报, 2020-12-07. http://kns.cnki.net/kcms/detail/11.2190.td.20200918.1124.002.html

    LIU Qiang. Noise attenuation based on L1-norm constraint inversion in seismic while drilling[J/OL]. Journal of China Coal Society, 2020-12-07. http://kns.cnki.net/kcms/detail/11.2190.td.20200918.1124.002.html
    [20] 姬广忠. 反射槽波绕射偏移成像及应用[J]. 煤田地质与勘探, 2017, 45(1): 121-124. doi: 10.3969/j.issn.1001-1986.2017.01.024

    JI Guangzhong. Diffraction migration imaging of reflected in-seam waves and its application[J]. Coal Geology & Exploration, 2017, 45(1): 121-124. doi: 10.3969/j.issn.1001-1986.2017.01.024
  • 加载中
图(9)
计量
  • 文章访问数:  803
  • HTML全文浏览量:  75
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-25
  • 修回日期:  2021-06-04
  • 发布日期:  2021-08-25
  • 网络出版日期:  2021-09-10

目录

    /

    返回文章
    返回