留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CSAMT电场分量的电性标志层深度校正技术及应用

刘最亮 张奋轩 张继锋 周光裕 赵辉 张新

刘最亮, 张奋轩, 张继锋, 周光裕, 赵辉, 张新. 基于CSAMT电场分量的电性标志层深度校正技术及应用[J]. 煤田地质与勘探, 2021, 49(4): 24-32. doi: 10.3969/j.issn.1001-1986.2021.04.004
引用本文: 刘最亮, 张奋轩, 张继锋, 周光裕, 赵辉, 张新. 基于CSAMT电场分量的电性标志层深度校正技术及应用[J]. 煤田地质与勘探, 2021, 49(4): 24-32. doi: 10.3969/j.issn.1001-1986.2021.04.004
LIU Zuiliang, ZHANG Fenxuan, ZHANG Jifeng, ZHOU Guangyu, ZHAO Hui, ZHANG Xin. Depth correction technique of electrical marker based on electrical field component of CSAMT[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 24-32. doi: 10.3969/j.issn.1001-1986.2021.04.004
Citation: LIU Zuiliang, ZHANG Fenxuan, ZHANG Jifeng, ZHOU Guangyu, ZHAO Hui, ZHANG Xin. Depth correction technique of electrical marker based on electrical field component of CSAMT[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 24-32. doi: 10.3969/j.issn.1001-1986.2021.04.004

基于CSAMT电场分量的电性标志层深度校正技术及应用

doi: 10.3969/j.issn.1001-1986.2021.04.004
基金项目: 

国家重点研发计划课题 2018YFC0807806

陕西省自然科学基金项目 2021JM-159

详细信息
    第一作者:

    刘最亮,1974年生,男,山西平遥人,博士,教授级高级工程师,从事煤田地质与勘探工作. E-mail:liuzuiliang@163.com

    通信作者:

    张继锋,1978年生,男,陕西蒲城人,博士,副教授,从事电法勘探理论及应用研究. E-mail:zjf0201@126.com

  • 中图分类号: P631

Depth correction technique of electrical marker based on electrical field component of CSAMT

  • 摘要: 可控源音频大地电磁(CSAMT)是探测含煤地层富水区及采空区的重要地球物理方法,但其探测深度误差比较大,采用电性标志层进行深度校正,达到精确解释地层的目的。首先,提出基于电场单分量视电阻率计算方法,只需通过平移即可获得全区视电阻率,无需迭代,简单快速。接着,分析视电阻率微分极值与电性标志层的关系,通过测井电阻率曲线识别出电性标志层,然后通过比值计算深度校正系数,在全区进行插值得到任意测点的校正深度。对新元煤矿31004工作面R280测线数据进行深度校正处理,结果表明:校正后的深度和实际地层基本吻合。最后,通过已知充水采空区边界、淋水点以及钻孔揭示的结果进行对比验证,达到了预期效果。该方法为CSAMT在含煤地层进行精细化数据处理和解释提供了新的思路。

     

  • 图  可控源电磁法示意图

    Fig. 1  Schematic chart of CSAMT

    图  基于电场全区视电阻率和卡尼亚视电阻率比较

    Fig. 2  Comparison of all time apparent resistivity based on electric field and Cagniad apparent resistivity

    图  理论模型电场全区视电阻率导数

    Fig. 3  Derivative of all time apparent resistivity based on electric field of theoretical geoelectric model

    图  测井旁视电阻率及其导数

    Fig. 4  Apparent resistivity by logging and its derivative

    图  抽象的理论模型及其视电阻率导数

    Fig. 5  Theoretical model and its apparent resistivity derivative

    图  电场视电阻率断面图

    Fig. 6  Apparent resistivity section based on electric field

    图  静态效应校正的电场视电阻率断面图

    Fig. 7  Apparent resistivity section based on electric field after correction of static shift

    图  电场视电阻率纵向导数

    Fig. 8  Derivative of apparent resistivity based on electric field

    图  深度校正后电场视电阻率断面图

    Fig. 9  Section of apparent resistivity based on electric field after depth correction

    图  10  R280线采空区边界和淋水点对比验证

    Fig. 10  Comparison and verification diagram of goaf boundary and water pouring point on R280 line

  • [1] GOLDSTEIN M A, STRANGWAY D W. Audio-frequency magnetitellurics with a grounded-electric dipole source[J]. Geophysics, 1975, 40(4): 669–683.. doi: 10.1190/1.1440558
    [2] 汤井田, 何继善. 可控源音频大地电磁法及其应用[M]. 长沙: 中南大学出版社, 2005.

    TANG Jingtian, HE Jishan. Controlled-source audio magnetotelluric method and its application[M]. Changsha: Central South University Press, 2005.
    [3] KAUFMAN A A, KELLER G V. Frequency and transient soundings[M]. New York: Elsevier Science Publishing Company, 1983.
    [4] 石昆法. 可控源音频大地电磁法理论与应用[M]. 北京: 科学出版社, 1999.

    SHI Kunfa. Controlled source audio-frequency magnetotelluric theory and application(in Chinese)[M]. Beijing: Science Press, 1999.
    [5] AN Zhiguo, DI Qingyun. Application of the CSAMT method for exploring deep coal mines in Fujian Province, southeastern China[J]. Journal of Environmental and Engineering Geophysics, 2010, 15(4): 243–249.. doi: 10.2113/JEEG15.4.243
    [6] 张继锋, 刘寄仁, 冯兵, 等. 三维陆地可控源电磁法有限元模型降阶快速正演[J]. 地球物理学报, 2020, 63(9): 3520–3533. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202009024.htm

    ZHANG Jifeng, LIU Jiren, FENG Bing, et al. Fast forward modeling of the 3D land controlled-source electromagnetic method based on model reduction[J]. Chinese Journal of Geophysics, 2020, 63(9): 3520–3533. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202009024.htm
    [7] 何继善. 可控源音频大地电磁法[M]. 长沙: 中南大学出版社, 1990.

    HE Jishan. Controlled source audio-frequency magnetotellurics method(in Chinese)[M]. Changsha: Central South University Press, 1990.
    [8] 闫述, 薛国强, 邱卫忠, 等. CSAMT单分量数据解释方法[J]. 地球物理学报, 2017, 60(1): 349–359. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201701030.htm

    YAN Shu, XUE Guoqiang, QIU Weizhong, et al. Interpretation of CSAMT single-component data[J]. Chinese Journal of Geophysics, 2017, 60(1): 349–359. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201701030.htm
    [9] 何继善. 广域电磁测深法研究[J]. 中南大学学报(自然科学版), 2010, 41(3): 1065–1072. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201003043.htm

    HE Jishan. Wide field electromagnetic sounding methods[J]. Journal of Central South University(Science and Technology), 2010, 41(3): 1065–1072. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201003043.htm
    [10] 何继善. 广域电磁法和伪随机信号电法[M]. 北京: 高等教育出版社, 2010.

    HE Jishan. Wide field electromagnetic methods and electrical method with pseudo-random signal(in Chinese)[M]. Beijing: Higher Education Press, 2010.
    [11] 陈卫营, 薛国强. 广域电磁法中垂直磁场分量的分析与应用[J]. 物探与化探, 2015, 39(2): 358–361. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201502024.htm

    CHEN Weiying, XUE Guoqiang. The analysis and application of the vertical magnetic component in wide field electromagnetic method[J]. Geophysical and Geo-chemical Exploration, 2015, 39(2): 358–361. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201502024.htm
    [12] 王顺国, 熊彬, 王有学, 等. 广域电磁法H–Hz方式波数域的一次场特征[J]. 桂林理工大学学报, 2012, 32(2): 179–183.. doi: 10.3969/j.issn.1674-9057.2012.02.005

    WANG Shunguo, XIONG Bin, WANG Youxue, et al. Wave-number domain features of primary field of H-Hz arrangement wide field electromagnetic method[J]. Journal of Guilin University of Technology, 2012, 32(2): 179–183.. doi: 10.3969/j.issn.1674-9057.2012.02.005
    [13] 邱卫忠, 闫述, 薛国强, 等. CSAMT的各分量在山地精细勘探中的作用[J]. 地球物理学进展, 2011, 26(2): 664–668.. doi: 10.3969/j.issn.1004-2903.2011.02.035

    QIU Weizhong, YAN Shu, XUE Guoqiang, et al. Action of CSAMT field components in mountainous fine prospecting[J]. Progress in Geophysics, 2011, 26(2): 664–668.. doi: 10.3969/j.issn.1004-2903.2011.02.035
    [14] 李帝铨, 谢维, 程党性. E-Ex广域电磁法三维数值模拟[J]. 中国有色金属学报, 2013, 23(9): 2459–2470.

    LI Diquan, XIE Wei, CHENG Dangxing. Three-dimensional modeling for E-Ex wide field electromagnetic methods[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(9): 2459–2470.
    [15] 武建平, 张超, 陈剑平, 等. 广域电磁法三维有限单元法模拟研究[J]. 物探与化探, 2020, 44(5): 1066–1072. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202005012.htm

    WU Jianping, ZHANG Chao, CHEN Jianping, et al. Three dimensional finite element simulation of wide field electromagnetic method[J]. Geophysical and Geochemical Exploration, 2020, 44(5): 1066–1072. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202005012.htm
    [16] 胡涂, 李帝铨. EEx广域电磁法对低阻薄层分辨能力探讨[J]. 物探化探计算技术, 2014, 36(3): 297–303.. doi: 10.3969/j.issn.1001-1749.2014.03.08

    HU Tu, LI Diquan. Distinguish ability on thin resistant layered structure of E-Ex mode of wide field electromagnetic sounding method[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2014, 36(3): 297–303.. doi: 10.3969/j.issn.1001-1749.2014.03.08
    [17] 王永兵, 尹文斌, 张磊. 航空广域电磁法初步探索[J]. 物探与化探, 2020, 44(5): 1059–1065. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202005011.htm

    WANG Yongbing, YIN Wenbin, ZHANG Lei. A preliminary exploration of the wide field electromagnetic method in aerogeophysical prospecting[J]. Geophysical and Geochemical Exploration, 2020, 44 (5): 1059–1065. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202005011.htm
    [18] 王若, 王妙月, 底青云, 等. CSAMT三维单分量有限元正演[J]. 地球物理学进展, 2014, 29(2): 839–845. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201402049.htm

    WANG Ruo, WANG Miaoyue, DI Qingyun, et al. 3D1C CSAMT modeling using finite element method[J]. Progress in Geophysics, 2014, 29(2): 839–845. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201402049.htm
    [19] 刘最亮, 王鹤宇, 冯兵, 等. 基于电性标志层识别的瞬变电磁精准处理技术[J]. 煤炭学报, 2019, 44(8): 2346–2355. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908009.htm

    LIU Zuiliang, WANG Heyu, FENG Bing, et al. TEM data accurate processing technology based on electrical marker layer[J]. Journal of China Coal Society, 2019, 44(8): 2346–2355. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908009.htm
    [20] 伏海涛, 罗维斌, 丁志军, 等. 水平电偶极源层状模型垂直磁场全区视电阻率计算方法[J]. 物探与化探, 2019, 43(6): 1309–1319. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201906019.htm

    FU Haitao, LUO Weibin, DING Zhijun, et al. The calculation method of whole zone apparent resistivity of vertical magnetic field on the surface of layered model excited by horizontal electric dipole source[J]. Geophysical and Geochemical Exploration, 2019, 43(6): 1309–1319. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201906019.htm
    [21] 佟铁钢, 刘春明, 何继善. CSAMT全区电阻率法数值模拟及应用探讨[J]. 地球物理学进展, 2009, 24(5): 1855–1860.. doi: 10.3969/j.issn.1004-2903.2009.05.041

    TONG Tiegang, LIU Chunming, HE Jishan. Numerical simulation and application discussion of the CSAMT full-zone resistivity method[J]. Progress in Geophysics, 2009, 24(5): 1855–1860.. doi: 10.3969/j.issn.1004-2903.2009.05.041
  • 加载中
图(10)
计量
  • 文章访问数:  233
  • HTML全文浏览量:  16
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-10
  • 修回日期:  2021-04-28
  • 发布日期:  2021-08-25
  • 网络出版日期:  2021-09-10

目录

    /

    返回文章
    返回