留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

荆门探区五峰组–龙马溪组页岩储层特征及甜点层段评价

李小明 柳吉荣 吝文 马丽红 刘德勋 陈宇杰

李小明, 柳吉荣, 吝文, 马丽红, 刘德勋, 陈宇杰. 荆门探区五峰组–龙马溪组页岩储层特征及甜点层段评价[J]. 煤田地质与勘探, 2021, 49(6): 1-11. doi: 10.3969/j.issn.1001-1986.2021.06.001
引用本文: 李小明, 柳吉荣, 吝文, 马丽红, 刘德勋, 陈宇杰. 荆门探区五峰组–龙马溪组页岩储层特征及甜点层段评价[J]. 煤田地质与勘探, 2021, 49(6): 1-11. doi: 10.3969/j.issn.1001-1986.2021.06.001
LI Xiaoming, LIU Jirong, LIN Wen, MA Lihong, LIU Dexun, CHEN Yujie. Characteristics of the shale gas reservoirs and evaluation of sweet spots in Wufeng Formation and Longmaxi Formation in Jingmen exploration area[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 1-11. doi: 10.3969/j.issn.1001-1986.2021.06.001
Citation: LI Xiaoming, LIU Jirong, LIN Wen, MA Lihong, LIU Dexun, CHEN Yujie. Characteristics of the shale gas reservoirs and evaluation of sweet spots in Wufeng Formation and Longmaxi Formation in Jingmen exploration area[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 1-11. doi: 10.3969/j.issn.1001-1986.2021.06.001

 

“煤系气地质与勘探开发”专题 编者按:
  受煤层气长期低效开采工作的延伸和天然气勘探开发领域不断拓展双驱动,煤系页岩气及煤系“三气”综合勘探初见成效。勘探开发煤系气具有安全、能源、环保三重效益,同时也是实现碳达峰、碳中和目标的重要举措。紧跟行业典型区块成功开发案例,围绕煤系气地质条件和资源潜力综合评价、甜点区优选、勘探开发关键技术等主题方向,遴选相关论文集中发表,以期促进同行交流和类似区块煤系气勘探开发技术进展。

荆门探区五峰组–龙马溪组页岩储层特征及甜点层段评价

doi: 10.3969/j.issn.1001-1986.2021.06.001
基金项目: 

国家科技重大专项项目 2017ZX05035

中国石油天然气股份有限公司重点项目 2017B49

中国石油天然气股份有限公司重点项目 2019F-31

详细信息
    第一作者:

    李小明,1970年生,男,山西大同人,博士,教授,从事非常规油气地质方面的教学和研究. E-mail:lixm@ncist.edu.cn

    通信作者:

    马丽红,1983年生,女,内蒙赤峰人,硕士,讲师,从事矿物岩石方面的教学和研究. E-mail:Malh@ncist.edu.cn

  • 中图分类号: P618.13

Characteristics of the shale gas reservoirs and evaluation of sweet spots in Wufeng Formation and Longmaxi Formation in Jingmen exploration area

  • 摘要: 为进一步明确荆门探区五峰组—龙马溪组页岩气资源潜力,优选甜点层段,以X井五峰组–龙马溪组一段页岩为主要研究对象,利用干酪根薄片、X衍射、核磁共振、微纳米CT扫描及地化分析等多种测试手段,结合测井解释成果,从岩石学、有机地球化学、矿物组成、孔隙类型及结构、物性及含气性等方面,系统评价五峰组—龙一段各小层储层特征,以优选甜点层段。结果表明:五峰组—龙一段以硅质页岩为主,主要形成于深水陆棚相还原环境,优质页岩段页岩气品质较高,有机地化特征优越;多手段测试孔隙率与渗透率均具有正相关特征,饱和水页岩核磁共振T2谱可分为2类5型,不同类型T2谱所反映的页岩孔径分布特征具有差异性,孤立孔主要存在于小于2 nm的微孔中,占比非常小;基于储层特征评价,优选出龙一$_1^1$—龙一$_1^2$小层为一类储层,五峰组上段和龙一$_1^3$小层为二类储层,龙一$_1^4$小层为三类储层,富碳高硅页岩段的五峰组上段—龙一$_1^3$小层(厚度约17.7 m)为页岩气甜点层段,研究成果可为荆门探区页岩气勘探开发确定水平井的靶体层段提供参考依据。

     

  • 图  荆门探区X井五峰组-龙一段综合柱状图

    Fig. 1  Comprehensive profiles of Wufeng Formation and the 1th Member of Longmaxi Formation of well X in Jingmen exploration area

    图  X井五峰组-龙一段矿物质量分数分布

    Fig. 2  Mineral content distribution of Wufeng Formation and the 1th Member of Longmaxi Formation of the well X

    图  荆门页岩气探区五峰组-龙一段页岩照片

    Fig. 3  Pictures of shale in Wufeng Formation and the 1th Member of Longmaxi Formation of the Jingmen shale gas exploration area

    图  荆门页岩气探区五峰组-龙一段干酪根显微组分(埋深3 122.89 m,层位为龙一$_1^1$)

    Fig. 4  Pictures of kerogen macerals from Wufeng Formation and the 1th Member of Longmaxi Formation in Jingmen exploration area

    图  样品T2谱分布

    Fig. 5  T2 spectral distribution of samples

    图  页岩样品显微CT图像的伪彩色增强

    Fig. 6  Pseudo color enhancement from micro CT images in shale samples

    图  X井核磁孔隙率与渗透率关系

    Fig. 7  Relationship between nuclear magnetic porosity and permeability in well X

    图  X井气测孔隙率与渗透率随深度变化

    Fig. 8  Variation of porosity and permeability with depth in gas logging of well X

    图  X井测井孔隙率与渗透率随深度关系

    Fig. 9  Relationship between logging porosity and permeability with depth in well X

    图  10  X井实测含气量与埋藏深度的关系

    Fig. 10  Relationship between shale gas content and burial depth in well X

    图  11  X井页岩TOC与含气量关系

    Fig. 11  Relationship between TOC and gas content of shale in well X

    图  12  X井页岩气组分与埋藏深度的关系

    Fig. 12  Relationship between gas components and burial depth of well X

    表  1  荆门探区X井五峰组-龙一段页岩矿物组成

    Table  1  Mineral composition of Wufeng Formation and the 1th Member of Longmaxi Formation of the well X in Jingmen exploration area

    层位 脆性矿物质量分数/% 黏土矿物总质量
    分数/%
    黏土矿物成分相对质量分数/% 脆性指数
    石英 钾长石 斜长石 方解石 白云石 黄铁矿 伊利石 高岭石 绿泥石 伊/蒙混层
    龙一$_1^4$ $ \tfrac{{25.7{\text{~}}37.3}}{{34.8(22)}} $ - $ \tfrac{{8.5{\text{~}}11.5}}{{10.6(22)}} $ $ \tfrac{{0.8{\text{~}}6.8}}{{2.8(3)}} $ $ \tfrac{{2.7{\text{~}}4.4}}{{3.5(2)}} $ $ \tfrac{{1.7{\text{~}}7.1}}{{2.7(22)}} $ $ \tfrac{{42.1{\text{~}}55.3}}{{51.1(22)}} $ $ \tfrac{{29{\text{~}}50}}{{38(22)}} $ - $ \tfrac{{22{\text{~}}34}}{{34(22)}} $ $ \tfrac{{18{\text{~}}41}}{{34(22)}} $ $ \tfrac{44.7~57.9} {49.0} $
    龙一$ _1^3 $ $ \tfrac{{35.3{\text{~}}49.5}}{{42.7(6)}} $ - $ \tfrac{{5.3{\text{~}}13.6}}{{10.0(6)}} $ $ \tfrac{{0.5{\text{~}}2.5}}{{1.4(4)}} $ $ \tfrac{{3.8{\text{~}}12.8}}{{7.8(6)}} $ $ \tfrac{{4.1{\text{~}}20.4}}{{8.2(6)}} $ $ \tfrac{{27.0{\text{~}}38.5}}{{30.5(6)}} $ $ \tfrac{{33{\text{~}}41}}{{37(6)}} $ $ \tfrac{{3{\text{~}}5}}{{4(5)}} $ $ \tfrac{{7{\text{~}}15}}{{11(6)}} $ $ \tfrac{{41{\text{~}}55}}{{49(6)}} $ $ \tfrac{61.5~73.0}{69.5} $
    龙一$_1^2$ $ \tfrac{{34.0{\text{~}}52.4}}{{43.4(5)}} $ - $ \tfrac{{6.6{\text{~}}9.8}}{{8.6(5)}} $ $ \tfrac{{1.1{\text{~}}2.5}}{{1.9(4)}} $ $ \tfrac{{7.1{\text{~}}16.2}}{{9.8(5)}} $ $ \tfrac{{4.5{\text{~}}16.4}}{{8.5(5)}} $ $ \tfrac{{21.9{\text{~}}32.3}}{{28.1(5)}} $ $ \tfrac{{30{\text{~}}41}}{{36(5)}} $ $ \tfrac{{2{\text{~}}7}}{{4(5)}} $ $ \tfrac{{5{\text{~}}13}}{{9(5)}} $ $ \tfrac{{42{\text{~}}63}}{{51(5)}} $ $ \tfrac{67.7~78.1}{71.9} $
    龙一$_1^1$ $ \tfrac{{13.2{\text{~}}62.6}}{{37.9(2)}} $ - $ \tfrac{{2.2{\text{~}}6.2}}{{4.2(2)}} $ $ \tfrac{{1.9{\text{~}}2.4}}{{2.2(2)}} $ $ \tfrac{{11.1{\text{~}}17.3}}{{14.2(2)}} $ 7.9(1) $ \tfrac{{22.2{\text{~}}50.5}}{{36.4(2)}} $ $ \tfrac{{42{\text{~}}46}}{{44(2)}} $ 5(1) $ \tfrac{{7{\text{~}}13}}{{10(2)}} $ $ \tfrac{{40{\text{~}}47}}{{44(2)}} $ $ \tfrac{49.5~77.8}{63.7} $
    五峰组 $ \tfrac{{18.7{\text{~}}67.6}}{{41.2(5)}} $ 1.4(1) $ \tfrac{{2.6{\text{~}}6.5}}{{5.7(5)}} $ $ \tfrac{{1.0{\text{~}}16.1}}{{4.9(5)}} $ $ \tfrac{{2.7{\text{~}}3.1}}{{13.3(5)}} $ $ \tfrac{{1.8{\text{~}}4.8}}{{3.0(5)}} $ $ \tfrac{{24.3{\text{~}}44.4}}{{33.9(5)}} $ $ \tfrac{{27{\text{~}}40}}{{34(5)}} $ - $ \tfrac{{9{\text{~}}21}}{{17(5)}} $ $ \tfrac{{41{\text{~}}64}}{{49(5)}} $ $ \tfrac{55.56~75.7}{66.1} $
    注:$ \tfrac{{25.7{\text{~}}37.3}}{{34.8(22)}} $表示最小~最大值/平均值(样品数),其他数据同;5.0(1)表示仅有一个样品检出;仅在龙一$_1^1$一块样品检出锐钛矿,质量分数为2.5%。
    下载: 导出CSV

    表  2  X井页岩岩心物性测试成果

    Table  2  Test results of the physical properties of the shale cores in well X

    样品编号 层位 深度/m 岩心核磁孔隙率测试结果 气测孔隙率/% CT孔隙率/% 脉冲衰减法渗透率/10–7 μm2
    含气饱和度% 含水饱和度% 核磁孔隙率% 饱和水状态 渗透率/10–8 μm2
    可动流体
    饱和度%
    束缚水
    饱和度%
    X1 龙一2 3 051.05 99.64 0.36 3.82 15.34 84.66 69.911
    X2 龙一2 3 065.48 99.08 0.92 1.44 8.98 91.02 0.418 0.068
    X3 龙一2 3 080.40 95.99 4.01 1.84 13.21 86.79 2.656 0.124
    XCT1 龙一2 3 081.25 2.15
    X4 龙一2 3 086.65 93.62 6.38 1.69 23.88 76.12 8.028 0.080 0.604
    X5 龙一$_1^4$ 3 090.39 95.45 4.55 1.32 10.81 89.19 0.446
    X6 龙一$_1^4$ 3 096.88 92.82 7.18 2.83 13.80 86.20 16.440
    X7 龙一$_1^4$ 3 101.28 92.65 7.35 2.88 18.04 81.96 33.330
    X8 龙一$_1^4$ 3 104.58 96.12 3.88 1.41 22.77 77.23 3.436
    X9 龙一$_1^4$ 3 109.30 90.37 9.63 0.92 26.60 73.40 0.941 0.172
    XCT2 龙一 3 090.39 8.51
    X10 龙一$_1^3$ 3 114.40 83.23 16.77 0.69 16.81 83.19 0.093 0.393
    XCT3 龙一$_1^3$ 3 115.47 1.95
    X11 龙一$_1^2$ 3 119.49 $_1^4$93.61 6.39 2.59 32.31 67.69 102.524 1.838 1 050.000
    X12 五峰组 3 124.87 54.32 45.68 0.52 35.88 64.12 0.223 0.835 10.530
    XCT4 五峰组 3 127.46 5.65
    X13 五峰组 3 129.54 80.32 19.68 0.60 0.00 100.00 0 0.079 0.172
    注:气测测试条件,测试气体为氮气、测试围压6.89 MPa、孔隙压力为1.38 MPa;核磁测试条件为饱和溶液矿化度2%,实验参考SY/T 6490-2000《岩样核磁共振参数实验室测量规范》进行。
    下载: 导出CSV

    表  3  X井页岩储层分类标准

    Table  3  Classification standards for shale reservoirs in well X

    类别 地质条件 工程条件脆性指数
    TOC/% 孔隙率/% 含气量/(m3·t–1) 有机质类型 有机质镜质体反射率/%
    储层 一类 > 2.0 > 2.0 > 3 1.2~3.0 > 60
    二类 > 1.0~2.0 > 1.0~2.0 > 2~3 1、Ⅱ2 3.0~4.0 > 50~60
    三类 0.5~1.0 0.5~1.0 1~2 > 4.0或 < 1.2 40~50
    非储层 < 0.5 < 0.5 < 1.5 - - < 40
    下载: 导出CSV

    表  4  X井页岩储层分类评价结果

    Table  4  Evaluation results of shale reservoir classification in well X

    层位 厚度/m TOC/% 有效孔隙率/% 含气量/(m3·t–1) 有机质成熟度平均值/% 有机质类型 脆性指数 储层分类
    龙一$_1^4$ 24.9 0.13~2.67/0.72 0.92~2.88/1.87 0.06~2.58/0.84 2.56 Ⅰ–Ⅱ1 44.7~57.9/48.95
    龙一$_1^3$ 6.1 0.76~4.35/3.41 0.69 2.58~4.20/3.26 2.68 61.5~73.0/69.53
    龙一$_1^2$ 4.6 3.1~6.79/4.88 2.59 3.51~3.90/3.71 2.46 7.1~18.7/71.86
    龙一$_1^1$ 2.1 0.2~4.62/2.85 - 3.55 2.77 Ⅰ–Ⅱ1 49.5~77.8/63.65
    五峰上段 4.9 2.15~3.50/2.68 0.52 2.05~2.51/2.33 2.80 60.5~75.7/67.37
    五峰下段 1.7 0.31 0.60 0.43 - 55.6~72.9/64.25 非储层
    注:表中0.13~2.67/0.72表示最小~最大值/平均值,其他同。
    下载: 导出CSV
  • [1] 张君峰, 许浩, 周志, 等. 鄂西宜昌地区页岩气成藏地质特征[J]. 石油学报, 2019, 40(8): 887-899.

    ZHANG Junfeng, XU Hao, ZHOU Zhi, et al. Geological characteristics of shale gas reservoir in Yichang area, western Hubei[J]. Acta Petrolei Sinica, 2019, 40(8): 887-899.
    [2] 金之钧, 胡宗全, 高波, 等. 川东南地区五峰组-龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016, 23(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601002.htm

    JIN Zhijun, HU Zongquan, GAO Bo, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601002.htm
    [3] 王鹏万, 李昌, 张磊, 等. 五峰组-龙马溪组储层特征及甜点层段评价: 以昭通页岩气示范区A井为例[J]. 煤炭学报, 2017, 42(11): 2925-2935. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201711018.htm

    WANG Pengwan, LI Chang, ZHANG Lei, et al. Characteristic of the shale gas reservoirs and evaluation of sweet spot in Wufeng-Longmaxi Formation: A case from the a well in Zhaotong shale gas demonstration zone[J]. Journal of China Coal Society, 2017, 42(11): 2925-2935. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201711018.htm
    [4] 郭曼, 李贤庆, 张明扬, 等. 黔北地区牛蹄塘组页岩气成藏条件及有利区评价[J]. 煤田地质与勘探, 2015, 43(2): 37-43.. doi: 10.3969/j.issn.1001-1986.2015.02.008

    GUO Man, LI Xianqing, ZHANG Mingyang, et al. Reservoir-forming conditions and evaluation of favorable area of shale gas in Niutitang Formation in Northern Guizhou[J]. Coal Geology & Exploration, 2015, 43(2): 37-43.. doi: 10.3969/j.issn.1001-1986.2015.02.008
    [5] 张慧, 魏小燕, 杨庆龙, 等. 海相页岩储层矿物质孔隙的形貌-成因类型[J]. 煤田地质与勘探, 2018, 46(4): 72-78.. doi: 10.3969/j.issn.1001-1986.2018.04.012

    ZHANG Hui, WEI Xiaoyan, YANG Qinglong, et al. The morphology-origin types of mineral pores in the marine shale reservoir[J]. Coal Geology & Exploration, 2018, 46(4): 72-78.. doi: 10.3969/j.issn.1001-1986.2018.04.012
    [6] 梁迈, 谭先锋, 陈现军, 等. 渝东南地区五峰-龙马溪组层序地层特征及地质意义[J]. 煤田地质与勘探, 2018, 46(6): 40-51.. doi: 10.3969/j.issn.1001-1986.2018.06.006

    LIANG Mai, TAN Xianfeng, CHEN Xianjun, et al. Sequence stratigraphy of Wufeng-Longmaxi Formation in the southeastern Chongqing area and its geological significance[J]. Coal Geology & Exploration, 2018, 46(6): 40-51.. doi: 10.3969/j.issn.1001-1986.2018.06.006
    [7] 马燕妮. 荆门地区龙马溪组页岩储层特征及含气性控制因素分析[D]. 成都: 西南石油大学, 2015.

    MA Yanni. Shale reservoir characteristics and gas bearing controlling factors of Longmaxi Formation in Jingmen area[D]. Chengdu: Southwest Petroleum University, 2015.
    [8] 邓铭哲, 何登发. 当阳地区地质结构及其对宜昌地区志留系页岩气勘探的意义[J]. 成都理工大学学报(自然科学版), 2018, 45(4): 487-500.. doi: 10.3969/j.issn.1671-9727.2018.04.09

    DENG Mingzhe, HE Dengfa. The geological structure in the Dangyang area and its significance to the shale gas exploration in Yichang area, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2018, 45(4): 487-500.. doi: 10.3969/j.issn.1671-9727.2018.04.09
    [9] 纪文明, 宋岩, 姜振学, 等. 四川盆地东南部龙马溪组页岩微-纳米孔隙结构特征及控制因素[J]. 石油学报, 2016, 37(2): 182-195. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201602004.htm

    JI Wenming, SONG Yan, JIANG Zhenxue, et al. Micro-nano pore structure characteristics and its control factors of shale in Longmaxi Formation, southeastern Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(2): 182-195. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201602004.htm
    [10] 陈志鹏, 梁兴, 张介辉, 等. 昭通国家级示范区龙马溪组页岩气储层超压成因浅析[J]. 天然气地球科学, 2016, 27(3): 442-448.

    CHEN Zhipeng, LIANG Xing, ZHANG Jiehui, et al. Genesis analysis of shale reservoir over pressure of Longmaxi Formation in Zhaotong demonstration area, Dianqianbei Depression[J]. Natural Gas Geoscience, 2016, 27(3): 442-448.
    [11] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2015, 42(6): 689-701.. doi: 10.11698/PED.2015.06.01

    ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: Characteristics, challenges and prospects(Ⅰ)[J]. Petroleum Exploration and Development, 2015, 42(6): 689-701.. doi: 10.11698/PED.2015.06.01
    [12] 刘安, 包汉勇, 李海, 等. 湖北省上奥陶统五峰组-下志留统龙马溪组页岩气地质条件分析及有利区带预测[J]. 华南地质与矿产, 2016, 32(2): 126-134.. doi: 10.3969/j.issn.1007-3701.2016.02.004

    LIU An, BAO Hanyong, LI Hai, et al. Analysis of the shale gas geological conditions of the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in Hubei Province and predict the favorable zone[J]. Geology and Mineral Resources of South China, 2016, 32(2): 126-134.. doi: 10.3969/j.issn.1007-3701.2016.02.004
    [13] 徐祖新, 郭少斌. 基于NMR和X-CT的页岩储层孔隙结构研究[J]. 地球科学进展, 2014, 29(5): 624-631. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201405013.htm

    XU Zuxin, GUO Shaobin. Application of NMR and X-CT technology in the pore structure study of shale gas reservoirs[J]. Advances in Earth Science, 2014, 29(5): 624-631. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201405013.htm
    [14] 李志清, 孙洋, 胡瑞林, 等. 基于核磁共振法的页岩纳米孔隙结构特征研究[J]. 工程地质学报, 2018, 26(3): 758-766. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201803023.htm

    LI Zhiqing, SUN Yang, HU Ruilin, et al. Quantitative analysis for nanopore structure characteristics of shales using NMR and NMR cryoporometry[J]. Journal of Engineering Geology, 2018, 26(3): 758-766. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201803023.htm
    [15] 汪贺, 师永民, 徐大卫, 等. 非常规储层孔隙结构表征技术及进展[J]. 油气地质与采收率, 2019, 26(5): 21-30.

    WANG He, SHI Yongmin, XU Dawei, et al. Unconventional reservoir pore structure characterization techniques and progress[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(5): 21-30.
    [16] 王琨, 周航宇, 赖杰, 等. 核磁共振技术在岩石物理与孔隙结构表征中的应用[J]. 仪器仪表学报, 2020, 41(2): 101-114. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB202002014.htm

    WANG Kun, ZHOU Hangyu, LAI Jie, et al. Application of NMR technology in characterization of petrophysics and pore structure[J]. Chinese Journal of Scientific Instrument, 2020, 41(2): 101-114. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB202002014.htm
    [17] 李志愿, 崔云江, 关叶钦, 等. 基于孔径分布和T2谱的低孔渗储层渗透率确定方法[J]. 中国石油大学学报(自然科学版), 2018, 42(4): 34-40.. doi: 10.3969/j.issn.1673-5005.2018.04.004

    LI Zhiyuan, CUI Yunjiang, GUAN Yeqin, et al. Permeability confirmation method of low porosity and permeability reservoirs based on pore distribution and T2 spectrum[J]. Journal of China University of Petroleum(Edition of Natural Science), 2018, 42(4): 34-40.. doi: 10.3969/j.issn.1673-5005.2018.04.004
    [18] 付永红, 司马立强, 张楷晨, 等. 页岩岩心气测孔隙度测量参数初探与对比[J]. 特种油气藏, 2018, 25(3): 144-148.. doi: 10.3969/j.issn.1006-6535.2018.03.029

    FU Yonghong, SIMA Liqiang, ZHANG Kaichen, et al. Preliminary study and comparison of shale core gas-porosity test parameters[J]. Special Oil & Gas Reservoirs, 2018, 25(3): 144-148.. doi: 10.3969/j.issn.1006-6535.2018.03.029
    [19] 葛明娜, 任收麦, 郭天旭, 等. 中国南方下古生界海相页岩气"优质层段"识别方法与应用[J]. 岩矿测试, 2020, 39(3): 350-361. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS202003005.htm

    GE Mingna, REN Shoumai, GUO Tianxu, et al. Identification method of marine shale gas "high-quality layer" in the Lower Paleozoic area, southern China and its application[J]. Rock and Mineral Analysis, 2020, 39(3): 350-361. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS202003005.htm
    [20] 刘树根, 焦堃, 张金川, 等. 深层页岩气储层孔隙特征研究进展: 以四川盆地下古生界海相页岩层系为例[J]. 天然气工业, 2021, 41(1): 29-41.

    LIU Shugen, JIAO Kun, ZHANG Jinchuan, et al. Research progress on the pore characteristics of deep shale gas reservoirs: An example from the Lower Paleozoic marine shale in the Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1): 29-41.
    [21] LI Yufeng, SUN Wei, LIU Xiwu, et al. Study of the relationship between fractures and highly productive shale gas zones, Longmaxi Formation, Jiaoshiba area in eastern Sichuan[J]. Petroleum Science, 2018, 15(3): 498-509.. doi: 10.1007/s12182-018-0249-7
    [22] ZENG Qingcai, CHEN Sheng, HE Pei, et al. Quantitative prediction of shale gas sweet spots based on seismic data in Lower Silurian Longmaxi Formation, Weiyuan area, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(3): 422-430. http://www.sciencedirect.com/science/article/pii/S1876380418300478
    [23] ZOU Caineng, YANG Zhi, PAN Songqi, et al. Shale gas formation and occurrence in China: An overview of the current status and future potential[J]. Acta Geologica Sinica(English Edition), 2016, 90(4): 1249-1283. http://www.onacademic.com/detail/journal_1000039656991710_67b6.html
    [24] 张晨晨, 王玉满, 董大忠, 等. 四川盆地五峰组-龙马溪组页岩脆性评价与"甜点层"预测[J]. 天然气工业, 2016, 36(9): 51-60.

    ZHANG Chenchen, WANG Yuman, DONG Dazhong, et al. Evaluation of the Wufeng-Longmaxi shale brittleness and prediction of "sweet spot layers" in the Sichuan Basin[J]. Natural Gas Industry, 2016, 36(9): 51-60.
    [25] 邹辰, 周松源, 梅珏, 等. 湖北当阳复向斜北部页岩气地质评价与有利区优选[J]. 海相油气地质, 2016, 21(2): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201602007.htm

    ZOU Chen, ZHOU Songyuan, MEI Jue, et al. Geological evaluation of Upper Ordovician-Lower Silurian gas-bearing shales and optional potential areas in the north of Dangyang Synclinorium, Hubei[J]. Marine Origin Petroleum Geology, 2016, 21(2): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201602007.htm
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  262
  • HTML全文浏览量:  50
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-13
  • 修回日期:  2021-06-16
  • 发布日期:  2021-12-25
  • 网络出版日期:  2021-12-30

目录

    /

    返回文章
    返回