松辽盆地徐家围子断陷深部含氦气藏特征与成藏过程

Characteristics and accumulation processes of helium gas fields in the deep part of Xujiaweizi area of the Songliao Basin

  • 摘要:目的和方法】 松辽盆地徐家围子断陷发育多个含氦气田,然而该区氦气资源量评价及其成藏模式尚未得到充分揭示。基于三维地震资料及24口井的测井数据,对基于自然伽马能谱测井的氦气资源评价方法进行优化,定量评估研究区深部地层壳源氦气的生氦潜量和理论生成量,并结合含氦气藏地球化学特征和壳源氦气生氦模拟结果,探讨研究区内壳源型和壳幔混合型氦气藏的充注历史和成藏模式。【结果和结论】 (1)下白垩统营城组、沙河子组和侏罗系火石岭组的生氦潜量分别为1.22×10-4、1.08×10-4及0.90×10-4 cm3/g,深部地层平均生氦潜量为0.96×10-4 cm3/g,氦气总生成量为7.4 km3,整体生氦能力中等偏下。(2)深部地层中铀(U)、钍(Th)放射性衰变产生的壳源型氦气,以烃类气体为载体,于95 Ma开始大规模运移并通过裂缝体系快速充注至上覆营城组火山岩及碎屑岩储层中,形成原位或近源氦气藏;而幔源氦气以CO2等幔源无机气体为载体,通过深大断裂、火山通道及不整合面向上运移,两类来源的氦气最终在圈闭中聚集形成含氦气藏。(3)壳源型氦气藏受源岩品质-烃氦耦合要素控制;壳幔复合型氦气藏受幔源流体活动和深大断裂控制。(4)对于中国东部的盆地,幔源成因的氦气充注可作为今后勘探开发的重点,徐家围子断陷后续氦气勘探应该着眼于幔源氦对含氦气藏的补充。

     

    Abstract: Objective and Methods The Xujiaweizi area of the Songliao Basin has numerous gas fields containing helium. However, the helium generation mechanisms and accumulation models remain insufficiently understood. With 3D seismic data and logging data from 24 wells, this study quantitatively evaluates the helium generation in the deep formations of Xujiaweizi area by using an improved helium resource assessment method based on natural gamma curves. Additionally, this study also analyzed the helium trapping models of this region in conjunction with hydrocarbon trapping characteristics. Results and Conclusions The results indicate that the average potential generation of helium of the deep formations in this area is 0.96×10-4 cm3/g, with the K1yc at 1.22×10-4 cm3/g, the K1sh at 1.08×10-4 cm3/g, and the J at 0.90×10-4 cm3/g. The total helium generation from deep formations in the region is 7.4 km3, which means the production is modest and source rocks are not good at generating helium. The crust-derived helium generated by the radioactive decay of uranium and thorium in deep mudstones of the study area migrated on a large scale starting at 95 Ma. Carried by hydrocarbon gases, it rapidly charged the overlying volcanic and clastic rock reservoirs of the K1yc Formation through fracture systems to form inside-or-near source helium accumulations. Meanwhile, mantle-derived helium, carried by mantle-sourced inorganic gases such as carbon dioxide, ascended through deep-seated faults, volcanic conduits, and unconformity surfaces. These two distinct helium sources finally accumulated in traps, maintaining a dynamic equilibrium where the charging rate exceeded the escape rate, thereby forming composite helium reservoirs.

     

/

返回文章
返回