芦甜,温国栋,马晓琳,等.不同回火温度对一种低碳高强钢显微组织及力学性能的影响[J].煤田地质与勘探,2022,50(2):169−174. DOI: 10.12363/issn.1001-1986.21.06.0322
引用本文: 芦甜,温国栋,马晓琳,等.不同回火温度对一种低碳高强钢显微组织及力学性能的影响[J].煤田地质与勘探,2022,50(2):169−174. DOI: 10.12363/issn.1001-1986.21.06.0322
LU Tian,WEN Guodong,MA Xiaolin,et al.Effects of different tempering temperatures on the microstructure and mechanical properties of a low-carbon high-strength steel[J].Coal Geology & Exploration,2022,50(2):169−174. DOI: 10.12363/issn.1001-1986.21.06.0322
Citation: LU Tian,WEN Guodong,MA Xiaolin,et al.Effects of different tempering temperatures on the microstructure and mechanical properties of a low-carbon high-strength steel[J].Coal Geology & Exploration,2022,50(2):169−174. DOI: 10.12363/issn.1001-1986.21.06.0322

不同回火温度对一种低碳高强钢显微组织及力学性能的影响

Effects of different tempering temperatures on the microstructure and mechanical properties of a low-carbon high-strength steel

  • 摘要: 为提高钻探装备用低碳高强钢材料的力学性能,可通过调节不同热处理回火温度以获得不同材料组织成分来有效实现。分别以610、630、650℃为试验设定热处理回火温度,并利用金相显微镜(OM)、扫描电镜(SEM)对回火后低碳高强钢材料显微组织进行对比分析;利用显微硬度仪、万能材料试验机、冲击试验机对试验材料显微组织硬度、拉伸性能及抗冲击性进行试验测试。研究结果表明:经过调质处理后的材料性能较原材料有所提升。当回火温度为610℃时,显微组织为回火马氏体+回火索氏体,其屈服强度最高为1 020 MPa,显微硬度为332 HV,且具有较好的塑性。随着回火温度的增加,显微组织发生回复,转变为回火索氏体。此时其屈服强度与抗拉强度下降,冲击功提升,650℃下冲击功最高。随着回火温度的变化,冲击与拉伸断口呈现出韧性断裂、准解理断裂以及混合断裂多种失效形式。回火工艺可有效提升该低碳高强钢的力学性能,且该工艺在生产中易得到大面积使用。

     

    Abstract: The mechanical properties of low carbon high strength steel materials used in drilling equipment can be improved effectively by adjusting tempering temperatures of different heat treatments to obtain different material composition. The heat treatment and tempering temperatures were set at 610℃, 630℃ and 650 ℃ respectively, and the microstructure of this low-carbon high-strength steel was compared and analyzed by metallographic microscope and Scanning Electron Microscope(SEM). After tempering, the microhardness, tensile properties and impact energy of the structure were measured respectively by the microhardness tester, universal material testing machine and impact testing machine. The research results show that the performance of the material after quenching and tempering is improved compared with that of the raw material. When the tempering temperature is 610℃, the microstructure is tempered martensite and tempered sorbite, with the maximum yield strength of 1 020 MPa and the microhardness of 332 HV. It also has good plasticity. As the tempering temperature increases, the microstructure recovers and transforms into tempered sorbite. At this time, the yield strength and tensile strength decrease, and the impact energy increases with the highest at 650°C. With the change of tempering temperature, the impact and tensile fractures show multiple failure modes of ductile fracture, quasi-cleavage fracture and mixed fracture. The tempering process can effectively improve the mechanical properties of the low-carbon high-strength steel, which can have a wide application easily in production.

     

/

返回文章
返回