Evaluation of coalbed methane extraction effect based on 3D geological modeling technology: An example of Sihe Mine in Jincheng City
-
摘要: 三维地质建模可直观、可视化评价煤层气动态抽采效果,为后续开发方案调整提供指导。借助三维地质建模软件,以晋城寺河煤矿西二盘区3号煤层为研究对象,基于寺河煤矿地质、产能数据分析和数值模拟,建立能反映煤层空间几何形态变化、构造特征及煤储层属性参数动态变化的地质模型,实现研究区煤层气抽采效果动态评价。利用构建的三维地质模型开展产气量、储层压力分布、剩余含气量等重要参数的预测,结果表明:寺河煤矿煤层气井不同排采周期预测的平均日产气量逐渐降低,影响范围逐渐扩大;研究区平均储层压力从2010年的1.31 MPa降至2022年的0.60 MPa,较2010年下降54%;研究区平均剩余含气量从2010年的15.70 m3/t降至2022年5.65 m3/t。研究结果可真实、客观地为三维地质模型在煤层气抽采效果评价中的应用提供科学依据。Abstract: Three-dimensional geological modeling can intuitively and visually evaluate the effect of coalbed methane(CBM) dynamic drainage, and provide guidance for subsequent adjustments to development plans. With the help of 3D geological modeling software, No.3 Coal Seam of west-second panel is taken as the research object. A geological model that can reflect the spatial geometric changes and structural characteristics of coal seams, and the dynamic changes of coal reservoir attribute parameters is established based on the analysis of geological and productivity data and numerical simulation, to realize the dynamic evaluation of the CBM extraction effect in the study area. The constructed three-dimensional geological model is used to predict important parameters such as gas production, reservoir pressure distribution, and remaining gas content. The results show that the average daily gas production predicted in different drainage cycles of the CBM wells in Sihe Mine will gradually decrease, and the scope of influence will gradually expand. The average reservoir pressure in the study area will drop from 1.31 MPa in 2010 to 0.60 MPa in 2022, a decrease of 54% from 2010. The average remaining gas content in the study area will drop from 15.70 m3/t in 2010 to 5.65 m3/t in 2022. It provides a scientific basis for the application of the three-dimensional geological model in the effect evaluation of CBM extraction in a factual and objective way.
-
表 1 寺河煤矿西二盘区及相邻区块3号煤储层压力
Table 1 Reservoir pressure of No. 3 Coal Seam in west-second panel of Sihe Mine and adjacent blocks
井号 储层压力/
MPa压力梯度/
(kPa·m−1)地应力梯度/
(kPa·m−1)SHX-292 0.85 2.35 18.10 SHX-295 0.78 2.47 18.70 YH091 2.11 4.83 20.30 YH093 2.26 8.22 29.90 表 2 寺河煤矿西二盘区3号煤原始含气量实测结果
Table 2 Measured results of original gas content of No. 3 Coal Seam in west-second panel of Sihe Mine
编号 含气量/(m3·t−1) 采样时间 编号 含气量/(m3·t−1) 采样时间 1 22.40 2005-07 18 19.88 — 2 26.33 2005-07 19 20.03 — 3 24.28 2005-07 20 19.50 — 4 24.92 2005-07 21 22.53 — 5 20.30 2005-07 22 22.65 — 6 22.17 2005-07 23 20.21 — 7 19.64 — 24 23.80 — 8 19.97 — 25 22.69 — 9 22.15 — 26 21.52 2008-03 10 27.79 2005-07 27 24.24 2008-12 11 22.53 — 28 11.04 2008-12 12 23.28 2005-07 29 26.18 2008-07 13 19.65 — 30 25.90 2007-12 14 23.15 2005-07 31 23.96 2007-11 15 19.73 — 32 22.62 2008-08 16 20.03 — 33 21.52 2008-03 17 19.50 — 表 3 寺河煤矿西二盘区数值模拟参数
Table 3 Numerical simulation parameters in west-second panel of Sihe Mine
参数 数值 煤厚/m 5.03~7.48 埋深/m 214~460 高程/m 254~347 储层压力/MPa 3.26 渗透率/10−3 μm2 0.8 孔隙率/% 2.0 含气量/(m3·t−1) 15~28 CH4体积分数/% 97 VL/(m3·t−1) 59 pL/MPa 2.63 吸附时间/d 11.0 煤密度/(t·m−3) 1.46 表 4 煤层气井排采第10—第15年间预测日平均产气量
Table 4 Predicted daily average gas production of CBM well drainage during the 10th to 15th years
井号 第10—第15年
平均产气量/(m3·d−1)井号 第10—第15年
平均产气量/(m3·d−1)井号 第10—第15年平均产气量/(m3·d−1) SHX150 1 141 SHJM-29 945 SHX115 441 SHX190 939 SHX135 297 SHJM-26 316 SHX191 1 492 SHX136 315 SHJM-30 648 SHX193 961 SHX137 1 162 SHX104 297 SHX194 1 904 SHX138 609 SHX104-1 331 SHX195 1 501 SHX139 502 SHX120 747 SHX236 2 258 SHX130 790 SHX254 804 SHX228 2 045 SHX230 1 914 SHX101 1 180 SH299 859 SHJM-27 971 SHX102 173 SH13-31 1 193 SHJM-23 933 SHX103 771 SHX146 645 SHJM-31 697 SHX105 908 SHX148 1 080 SHX123 734 SHX106 999 SHX227 2 167 SHX124 590 SHX107 212 SHX240 882 SHX125 432 SHX108 0 SHX131 853 SHX126 771 SHX109 1 636 SHX144 1 248 SHX128 745 SHX110 1720 SHX147 610 SHX129 391 SHX111 339 SHX142 560 SH293 247 SH288 617 SHX143 596 SHX122 956 YH092 347 SHX234 2 352 SHJM-24 359 YH024 508 SHX145 699 SHX127 804 YH093 342 SHX249 1 148 SHX257 570 YH089 963 SHX140 333 SHX113 311 SHX252 953 SHX141 656 SHX116-1 586 SH287 599 SHX226 1 477 SHX118 478 YH084 0 SHX132 1 179 SHX119 983 YH085 960 SHX133 605 SH291 1 207 YH086 1 198 SHJM-28 642 SHX112 568 YH087 10 SHX134 391 SHX114 599 表 5 寺河矿西二盘区抽采效果评价
Table 5 Evaluation of drainage effect in west-second panel of Sihe Mine
参数井 原始含气量/(m3·t−1) 检验井 预测剩余含气量/(m3·t−1) 降低率/% SHX-126 22.53 ZX-X2JY-01 7.35 67.38 SHX-127 21.94 66.50 SHX-146 22.69 ZX-X2JY-02 4.63 79.59 SHX-144 20.21 ZX-X2JY-03 5.16 74.47 SHX-145 23.8 78.32 SHX-128 19.65 ZX-X2JY-04 3.94 79.95 SHX-129 21.62 81.78 SHX-138 22.53 ZX-X2JY-05 7.75 65.60 SHX-139 22.65 65.78 平均 21.96 5.77 73.26 表 6 三维地质模型预测剩余含气量与实测剩余含气量对比
Table 6 Comparison of the remaining gas content predicted by the 3D geological model and the measured remaining gas content
检验井 实测剩余含气量/(m3·t−1) 三维模型预测剩余含气量/(m3·t−1) 绝对误差/(m3·t−1) 相对误差/% ZX-X2JY-01 7.85 7.35 −0.50 6.37 ZX-X2JY-02 6.20 4.63 −1.57 25.32 ZX-X2JY-03 5.02 5.16 0.14 2.79 ZX-X2JY-04 3.70 3.94 0.24 6.49 ZX-X2JY-05 4.07 7.75 3.68 90.42 -
[1] YARUS J M, CHAMBERS R L. 随机建模和地质统计学: 原理、方法和实例研究[M]. 北京: 石油工业出版社, 2000. [2] 桂阿娟. 三维地质建模技术在储层研究中的应用[J]. 价值工程,2016,35(26):209−211.GUI Ajuan. Application of 3D geologic modeling technique in reservoir research[J]. Value Engineering,2016,35(26):209−211. [3] 鲁卡·考森蒂偌. 油藏评价一体化研究[M]. 北京: 石油工业出版社, 2003. [4] 王武学,赵家宏,刘军,等. 三维地质建模技术在大布苏地区花29区块的应用[J]. 石油天然气学报(江汉石油学院学报),2010,32(2):191−194.WANG Wuxue,ZHAO Jiahong,LIU Jun,et al. Application of 3D geological modeling technology in Hua 29 block in Dabusu area[J]. Journal of Oil and Gas Technology,2010,32(2):191−194. [5] 瞿建华,王新海,秦可,等. LN 油田2井区三叠系储层三维建模技术研究[J]. 特种油气藏,2006,13(4):20−23.. doi: 10.3969/j.issn.1006-6535.2006.04.006QU Jianhua,WANG Xinhai,QIN Ke,et al. 3D modeling of Triassic reservoir in Wellblock 2 of LN Oilfield[J]. Special Oil & Gas Reservoirs,2006,13(4):20−23.. doi: 10.3969/j.issn.1006-6535.2006.04.006 [6] 王晓梅,张群,张培河,等. 煤层气储层数值模拟研究的应用[J]. 天然气地球科学,2004,15(6):664−668.. doi: 10.3969/j.issn.1672-1926.2004.06.023WANG Xiaomei,ZHANG Qun,ZHANG Peihe,et al. Application of coalbed methane reservoir simulation[J]. Natural Gas Geoscience,2004,15(6):664−668.. doi: 10.3969/j.issn.1672-1926.2004.06.023 [7] 张亚蒲,张冬丽,杨正明,等. 煤层气定向羽状水平井数值模拟技术应用[J]. 天然气工业,2006,26(12):115−117.. doi: 10.3321/j.issn:1000-0976.2006.12.031ZHANG Yapu,ZHANG Dongli,YANG Zhengming,et al. The application of pinnate horizontal multilateral well numerical simulation technology[J]. Natural Gas Industry,2006,26(12):115−117.. doi: 10.3321/j.issn:1000-0976.2006.12.031 [8] 闫岩. 沁南区块煤层气数值模拟及开发方案研究[D]. 大庆: 东北石油大学, 2015.YAN Yan. The study on numerical simulation and development scheme of coalbed gas in Qin South Block[D]. Daqing: Northeast Petroleum University, 2015. [9] 降文萍. 地面煤层气开发残余气含量研究[R]. 西安: 煤炭科学研究总院西安研究院, 2011. [10] 李国富,李贵红,刘刚. 晋城矿区典型区煤层气地面抽采效果分析[J]. 煤炭学报,2014,39(9):1932−1937.LI Guofu,LI Guihong,LIU Gang. Analysis on the ground extraction effect of coal–bed methane at typical area in Jincheng,China[J]. Journal of China Coal Society,2014,39(9):1932−1937. [11] 陈博. 保德Ⅰ单元煤储层三维地质建模及动态特征分析[D]. 北京: 中国地质大学(北京), 2020.CHEN Bo. Three−dimensional geological modeling and dynamic characteristic analysis of coal reservoir in Baode unit Ⅰ[J]. Beijing: China University of Geosciences(Beijing), 2020. [12] TANG Shuling,TANG Dazhen,LI Song,et al. Fracture system identification of coal reservoir and the productivity differences of CBM wells with different coal structures:A case in the Yanchuannan block,Ordos Basin[J]. Journal of Petroleum Science and Engineering,2018,161:175−189.. doi: 10.1016/j.petrol.2017.11.048 [13] 周优,张松航,唐书恒,等. 柿庄南区块3号煤层含气量三维建模[J]. 煤田地质与勘探,2020,48(1):96−104.. doi: 10.3969/j.issn.1001-1986.2020.01.013ZHOU You,ZHANG Songhang,TANG Shuheng,et al. Gas content modeling of No.3 coal seam in district 3 of southern Shizhuang Block[J]. Coal Geology & Exploration,2020,48(1):96−104.. doi: 10.3969/j.issn.1001-1986.2020.01.013 [14] 潘结南,孟召平,甘莉. 矿山三维地质建模与可视化研究[J]. 煤田地质与勘探,2005,33(1):16−18.. doi: 10.3969/j.issn.1001-1986.2005.01.005PAN Jienan,MENG Zhaoping,GAN Li. Study on 3D geoscience modeling and visualization of mines[J]. Coal Geology & Exploration,2005,33(1):16−18.. doi: 10.3969/j.issn.1001-1986.2005.01.005 [15] 李世临, 李爽, 张文济, 等. 精细三维地质建模方法在川东地区石炭系气藏应用–以双家坝区块为例[C]//中国石油学会, 中国石油西南油气田公司2013年全国天然气学术年会论文集. 2013: 547–553. [16] 马国龙,张庆华,赵彬. 寺河煤矿煤与瓦斯突出主控因素分析及防治对策[J]. 煤炭科学技术,2014,42(3):49−52.MA Guolong,ZHANG Qinghua,ZHAO Bin. Analysis on major control factors of coal and gas outburst in Sihe mine and prevention countermeasures[J]. Coal Science and Technology,2014,42(3):49−52. [17] 郑毅,刘爱平. 沁水盆地晋城地区煤层气田固井实践[J]. 石油钻采工艺,2000,22(3):20−22.. doi: 10.3969/j.issn.1000-7393.2000.03.006ZHENGY Yi,LIU Aiping. Cementing practices in coalbed gas wells in Jincheng area of Qinshui Basin[J]. Oil Drilling & Production Technology,2000,22(3):20−22.. doi: 10.3969/j.issn.1000-7393.2000.03.006 [18] 李贵红. 山西省沁水煤田晋城矿区寺河煤矿煤炭、煤层气资源储量核实报告[R]. 西安: 煤炭科学研究总院西安研究院, 2009. [19] 陈晓阳,石洪福,杜鹏. 煤层气数值模拟及应用研究[J]. 中国煤层气,2012,9(1):37−39.. doi: 10.3969/j.issn.1672-3074.2012.01.010CHEN Xiaoyang,SHI Hongfu,DU Peng. CBM numerical simulation and its application and study[J]. China Coalbed Methane,2012,9(1):37−39.. doi: 10.3969/j.issn.1672-3074.2012.01.010 [20] 秦学成,段永刚,谢学恒,等. 煤层气井产气量控制因素分析[J]. 西南石油大学学报(自然科学版),2012,34(2):99−104.QIN Xuecheng,DUAN Yonggang,XIE Xueheng,et al. Controlling factor analysis of gas production rate in coal bed gas well[J]. Journal of Southwest Petroleum University(Science & Technology Edition),2012,34(2):99−104. [21] 陈国良,朱良峰,刘修国. 三维地质断层结构模型的构建技术及方法[J]. 信阳师范学院学报(自然科学版),2007,20(2):248−251.CHEN Guoliang,ZHU Liangfeng,LIU Xiuguo. Technology and method for building 3D geological fault structure model[J]. Journal of Xinyang Normal University(Natural Science Edition),2007,20(2):248−251. [22] 朱良峰,陈国良,吴信才,等. 基于线框架模型的三维地质断层结构模型及其构建技术[J]. 地学前缘,2007,14(2):276−282.. doi: 10.3321/j.issn:1005-2321.2007.02.025ZHU Liangfeng,CHEN Guoliang,WU Xincai,et al. 3D geological fault model and its construction based on wire frame model[J]. Earth Science Frontiers,2007,14(2):276−282.. doi: 10.3321/j.issn:1005-2321.2007.02.025 [23] 邹起阳,阎振华,徐阳东,等. 应用Petrel进行构造建模的研究[J]. 长江大学学报(自然科学版),2011,8(2):62−64.ZOU Qiyang,YAN Zhenhua,XU Yangdong,et al. Structure modeling using Petrel software[J]. Journal of Yangtze University(Natural Science Edition),2011,8(2):62−64. [24] 张争争, 王学平. 地质统计学中变差函数在矿产勘探中的应用[C]//中国地质学会数学地质和地学信息专业委员会、国家自然科学基金委员会地球科学部、中国地质调查局科技外事部、新疆维吾尔地质矿产勘查开发局. 第十二届全国数学地质与地学信息学术研讨会论文集. 中国地质学会数学地质和地学信息专业委员会、国家自然科学基金委员会地球科学部、中国地质调查局科技外事部、新疆维吾尔地质矿产勘查开发局: 中国科学院新疆生态与地理研究所, 2013: 251–258. [25] 刘占宁,宋宇辰,孟海东,等. 序贯高斯模拟在矿石品位估计中的应用研究[J]. 地质找矿论丛,2018,33(1):149−155.. doi: 10.6053/j.issn.1001-1412.2018.01.019LIU Zhanning,SONG Yuchen,MENG Haidong,et al. Application of sequential Gaussian simulation in ore grade estimation[J]. Contributions to Geology and Mineral Resources Research,2018,33(1):149−155.. doi: 10.6053/j.issn.1001-1412.2018.01.019 -