留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑围岩应变软化及采空区接触的深部煤层底板破坏分析

尹尚先 孟浩鹏 钱双彬

尹尚先,孟浩鹏,钱双彬. 考虑围岩应变软化及采空区接触的深部煤层底板破坏分析[J]. 煤田地质与勘探,2022,50(5):95−102. doi: 10.12363/issn.1001-1986.21.09.0474
引用本文: 尹尚先,孟浩鹏,钱双彬. 考虑围岩应变软化及采空区接触的深部煤层底板破坏分析[J]. 煤田地质与勘探,2022,50(5):95−102. doi: 10.12363/issn.1001-1986.21.09.0474
YIN Shangxian,MENG Haopeng,QIAN Shuangbin. Failure analysis of deep coal seam floor considering strain softening of surrounding rock and formation contact in goaf[J]. Coal Geology & Exploration,2022,50(5):95−102. doi: 10.12363/issn.1001-1986.21.09.0474
Citation: YIN Shangxian,MENG Haopeng,QIAN Shuangbin. Failure analysis of deep coal seam floor considering strain softening of surrounding rock and formation contact in goaf[J]. Coal Geology & Exploration,2022,50(5):95−102. doi: 10.12363/issn.1001-1986.21.09.0474

考虑围岩应变软化及采空区接触的深部煤层底板破坏分析

doi: 10.12363/issn.1001-1986.21.09.0474
基金项目: 国家自然科学基金项目(51774136,51974126);河北省自然科学基金重点项目(D2017508099)
详细信息
    第一作者:

    尹尚先,1964年生,男,山西朔州人,博士,教授,博士生导师,从事煤矿防治水工作. E-mail:yinshx03@126.com

  • 中图分类号: TD12;TD325

Failure analysis of deep coal seam floor considering strain softening of surrounding rock and formation contact in goaf

  • 摘要: 为研究深部煤层开采底板破坏形态,提出考虑围岩应变软化和采空区接触的FLAC3D有限差分数值方法,以河北开平煤田林西矿2023工作面底板实测导水裂隙带为工程背景,结合朗肯土压力理论定性分析,研究深部煤层底板破坏特征。结果表明:采用应变软化本构关系代替常用摩尔–库伦本构关系能够对围岩塑性破坏后的力学状态更准确表述;采用“应变软化–空–弹性”模型转变的方法,达到模拟采空区顶板垮落后应力传递的效果,弥补了以往煤层开采模拟中采空区垮落后顶底板不接触的固有缺陷;通过采空区顶底板接触与否条件下应力、位移的对比,发现采空区是否接触对数值结果影响巨大,突出考虑采空区接触的必要性;根据模拟结果中塑性剪切应变率的变化,实现了底板滑移面的三维显示,形态为斜向采空区的半包围面状结构;结合朗肯土压力理论将底板塑性区与主动区、过渡区和被动区对应,3个区破坏形式分别为剪切破坏、剪切破坏、拉张与剪切的交互破坏。提出的考虑围岩应变软化及采空区接触的FLAC3D数值方法对煤层开采模拟实现了优化,并可为其他大变形后需考虑接触的工程模拟提供参考。

     

  • 图  2023工作面底板破坏深度实测钻孔布置

    Fig. 1  Layout of boreholes for the failure depth in the floor of working face 2023

    图  2个钻孔漏失量曲线

    Fig. 2  Two boreholes leakage curves

    图  D01-2钻孔不同深度成像

    Fig. 3  D01-2 borehole imaging at different depths

    图  煤层底板破坏分区

    Fig. 4  Coal seam floor failure zones

    图  煤层底板极限平衡状态

    Fig. 5  Limit equilibrium state of coal seam floor

    图  2种本构模型应力–应变曲线

    Fig. 6  Stress-strain curves of two constitutive models

    图  煤层底板破坏数值模型

    Fig. 7  Numerical model of coal seam floor failure

    图  煤层顶底板竖直方向应力

    Fig. 8  Stress in vertical direction of coal seam roof and floor

    图  煤层顶底板竖直位移

    Fig. 9  Vertical displacement of coal seam roof and floor

    图  10  不同回采距离塑性区分布

    Fig. 10  Plastic zone distribution in different mining distance

    图  11  不同回采距离塑性剪切应变突出区

    Fig. 11  Strain-shear-plastic outburst zone in different mining distance

    图  12  2种地应力下局部模拟结果

    Fig. 12  Local simulation results under two ground stresses

    表  1  数值模型岩石力学参数

    Table  1  Rock mechanical parameters of the numerical model

    岩层密度/(kg∙m−3)弹性模量/GPa泊松比黏聚力/MPa抗拉强度/MPa内摩擦角/(°)剪胀角/(°)
    中砂岩26701.800.272.90.454212
    粉砂岩25502.100.313.10.284011
    泥岩24801.200.350.80.22309
    粗砂岩27601.700.262.80.644412
    细砂岩25902.000.291.10.333210
    煤层16000.850.380.50.14289
    下载: 导出CSV
  • [1] 董书宁,王皓,张文忠. 华北型煤田奥灰顶部利用与改造判别准则及底板破坏深度[J]. 煤炭学报,2019,44(7):2216−2226. DONG Shuning,WANG Hao,ZHANG Wenzhong. Judgement criteria with utilization and grouting reconstruction of top Ordovician limestone and floor damage depth in North China coal field[J]. Journal of China Coal Society,2019,44(7):2216−2226.
    [2] 刘伟韬,穆殿瑞,杨利,等. 倾斜煤层底板破坏深度计算方法及主控因素敏感性分析[J]. 煤炭学报,2017,42(4):849−859. LIU Weitao,MU Dianrui,YANG Li,et al. Calculation method and main factor sensitivity analysis of inclined coal floor damage depth[J]. Journal of China Coal Society,2017,42(4):849−859.
    [3] 刘新民. 沿空留巷采煤对底板扰动破坏深度影响[J]. 煤田地质与勘探,2016,44(2):79−84. LIU Xinmin. Influence of mining in retained gateway along goaf on the disturbance and destruction depth of floor[J]. Coal Geology & Exploration,2016,44(2):79−84.. doi: 10.3969/j.issn.1001-1986.2016.02.015
    [4] 朱斯陶,姜福兴,KOUAME K J A,等. 深井特厚煤层综放工作面断层活化规律研究[J]. 岩石力学与工程学报,2016,35(1):50−58. ZHU Sitao,JIANG Fuxing,KOUAME K J A,et al. Fault activation of fully mechanized caving face in extra–thick coal seam of deep shaft[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(1):50−58.
    [5] 朱广安,窦林名,刘阳,等. 采动影响下断层滑移失稳的动力学分析及数值模拟[J]. 中国矿业大学学报,2016,45(1):27−33. ZHU Guang’an,DOU Linming,LIU Yang,et al. Dynamic analysis and numerical simulation of fault slip instability induced by coal extraction[J]. Journal of China University of Mining & Technology,2016,45(1):27−33.
    [6] 田雨桐,张平松,吴荣新,等. 煤层采动条件下断层活化研究的现状分析及展望[J]. 煤田地质与勘探,2021,49(4):60−70. TIAN Yutong,ZHANG Pingsong,WU Rongxin,et al. Research status and prospect of fault activation under coal mining conditions[J]. Coal Geology & Exploration,2021,49(4):60−70.. doi: 10.3969/j.issn.1001-1986.2021.04.008
    [7] 朱庆伟,李航,杨小虎,等. 采动覆岩结构演化特征及对地表沉陷的影响分析[J]. 煤炭学报,2019,44(增刊1):9−17. ZHU Qingwei,LI Hang,YANG Xiaohu,et al. Influence analysis of between subsidence and structure evolution in overburden rock under mining[J]. Journal of China Coal Society,2019,44(Sup.1):9−17.
    [8] 甘智慧,尚慧,杜荣军,等. 基于FLAC3D和DEM数据的缓倾斜煤层开采沉陷分析[J]. 煤田地质与勘探,2021,49(3):158−166. GAN Zhihui,SHANG Hui,DU Rongjun,et al. Mining subsidence analysis of gently inclined coal seams based on FLAC3D and DEM data[J]. Coal Geology & Exploration,2021,49(3):158−166.
    [9] 王涛, 韩煊, 苏凯, 等. FLAC3D数值模拟方法及工程应用: 深入剖析FLAC3D 5. 0[M]. 北京: 中国建筑工业出版社, 2019.
    [10] 王文学,王四巍,刘海宁,等. 采后覆岩裂隙岩体应力恢复的时空特征[J]. 采矿与安全工程学报,2017,34(1):127−133. WANG Wenxue,WANG Siwei,LIU Haining,et al. The space and time characteristics of the cover stress reestablishment of the fractured rock mass in the goaf after coal mining[J]. Journal of Mining & Safety Engineering,2017,34(1):127−133.
    [11] 胡炳南, 张华兴, 申宝宏. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采指南[M]. 北京: 煤炭工业出版社, 2017.
    [12] 李广信, 张丙印, 于玉贞. 土力学(第2版)[M]. 北京: 清华大学出版社, 2013.
    [13] 张金才, 张玉卓, 刘天泉. 岩体渗流与煤层底板突水[M]. 北京: 地质出版社, 1997.
    [14] 赵文, 曹平, 章光. 岩石力学[M]. 长沙: 中南大学出版社, 2010.
    [15] 彭文斌. FLAC3D实用教程[M]. 北京: 机械工业出版社, 2019.
    [16] 郑宏,刘德富. 弹塑性矩阵 D ep的特性和有限元边坡稳定性分析中的极限状态标准[J]. 岩石力学与工程学报,2005,24(7):1099−1105. ZHENG Hong,LIU Defu. Properties of elasto–plastic matrix D ep and acriterion on limiting state of slope stability by FEM[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(7):1099−1105.. doi: 10.3321/j.issn:1000-6915.2005.07.002
    [17] WANG Shuilin,ZHENG Hong,LI Chunguang,et al. A finite element implementation of strain−softening rock mass[J]. International Journal of Rock Mechanics and Mining Sciences,2011,48(1):67−76.. doi: 10.1016/j.ijrmms.2010.11.001
    [18] WANG Shuilin,YIN Xiaotao,TANG Hua,et al. A new approach for analyzing circular tunnel in strain−softening rock masses[J]. International Journal of Rock Mechanics and Mining Sciences,2010,47(1):170−178.. doi: 10.1016/j.ijrmms.2009.02.011
    [19] 沈华章,王水林,刘泉声. 模拟应变软化岩石三轴试验过程曲线[J]. 岩土力学,2014,35(6):1647−1654. SHEN Huazhang,WANG Shuilin,LIU Quansheng. Simulation of constitutive curves for strain–softening rock in triaxial compression[J]. Rock and Soil Mechanics,2014,35(6):1647−1654.
    [20] 陆银龙,王连国,杨峰,等. 软弱岩石峰后应变软化力学特性研究[J]. 岩石力学与工程学报,2010,29(3):640−648. LU Yinlong,WANG Lianguo,YANG Feng,et al. Post−peak strain softening mechanical properties of weak rock[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(3):640−648.
    [21] 杨峰. 高应力软岩巷道变形破坏特征及让压支护机理研究[D]. 徐州: 中国矿业大学, 2009.

    YANG Feng. Research on deformation and failure character and yielding support mechanism in high stress soft rock roadway[D]. Xuzhou: China University of Mining and Technology, 2009.
    [22] 景锋,盛谦,张勇慧,等. 不同地质成因岩石地应力分布规律的统计分析[J]. 岩土力学,2008,29(7):1877−1883. JING Feng,SHENG Qian,ZHANG Yonghui,et al. Statistical analysis of geostress distribution laws for different rocks[J]. Rock and Soil Mechanics,2008,29(7):1877−1883.. doi: 10.3969/j.issn.1000-7598.2008.07.028
    [23] 阎锡东,刘红岩,邢闯锋,等. 冻融循环条件下岩石弹性模量变化规律研究[J]. 岩土力学,2015,36(8):2315−2322. YAN Xidong,LIU Hongyan,XING Chuangfeng,et al. Variability of elastic modulus in rock under freezing–thawing cycles[J]. Rock and Soil Mechanics,2015,36(8):2315−2322.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  15
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-01
  • 修回日期:  2021-12-20
  • 发布日期:  2022-05-25
  • 网络出版日期:  2022-05-07

目录

    /

    返回文章
    返回