留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于宽窄平台相结合的黄土高边坡优化设计

南宁 李鹏 苏生瑞 董福 马驰

南宁,李鹏,苏生瑞,等. 基于宽窄平台相结合的黄土高边坡优化设计−以陕西省子长市某工业广场高边坡为例[J]. 煤田地质与勘探,2022,50(6):155−164. doi: 10.12363/issn.1001-1986.21.10.0566
引用本文: 南宁,李鹏,苏生瑞,等. 基于宽窄平台相结合的黄土高边坡优化设计−以陕西省子长市某工业广场高边坡为例[J]. 煤田地质与勘探,2022,50(6):155−164. doi: 10.12363/issn.1001-1986.21.10.0566
NAN Ning,LI Peng,SU Shengrui,et al. Optimization design of high loess slope based on combination of wide and narrow platform:A case study of an industrial square in Zichang City[J]. Coal Geology & Exploration,2022,50(6):155−164. doi: 10.12363/issn.1001-1986.21.10.0566
Citation: NAN Ning,LI Peng,SU Shengrui,et al. Optimization design of high loess slope based on combination of wide and narrow platform:A case study of an industrial square in Zichang City[J]. Coal Geology & Exploration,2022,50(6):155−164. doi: 10.12363/issn.1001-1986.21.10.0566

基于宽窄平台相结合的黄土高边坡优化设计—以陕西省子长市某工业广场高边坡为例

doi: 10.12363/issn.1001-1986.21.10.0566
基金项目: 中国中煤能源集团有限公司科技创新项目(JT-BAKJ-2018-002);中央高校基本科研业务费资助项目(300102261402);甘肃省自然资源厅2020年度中央财政自然灾害防治体系建设补助资金计划项目(甘资财发〔2020〕16号)
详细信息
    第一作者:

    南宁,1997年生 ,男,陕西子长人,硕士研究生,从事地质灾害防治研究. E-mail:983314524@qq.com

    通信作者:

    苏生瑞,1963年生,男,甘肃庆阳人,博士,教授,博士生导师,从事地质灾害防治等研究. E-mail:shengruisu@163.com

  • 中图分类号: TD22;P642.21

Optimization design of high loess slope based on combination of wide and narrow platform:A case study of an industrial square in Zichang City

  • 摘要: 山区或丘陵地带建设煤矿工业广场时将面临高边坡问题,不合理的高边坡设计严重浪费土地资源,造成环境破坏和投资增加,也为基础设施带来巨大安全隐患。基于此,以陕西省子长市某煤矿工业广场高边坡为例,借助现场调查、理论分析和数值模拟等手段,综合考虑边坡抗冲刷性和整体稳定性,探讨不同数量、位置和宽度的宽平台对高边坡的应力、应变场和稳定性系数的影响规律,结合模型的开挖量,选取满足稳定性要求且开挖量最少的最优坡形。结果显示:陕北地区粉黄土高边坡最优单坡坡率为1∶0.75,坡高5~6 m;宽平台能改变潜在滑移面位置,当宽平台位于坡脚或坡顶时,潜在滑移面分布以宽平台位置为界,分布于宽平台以上或以下边坡;当宽平台连续分布且宽度较大时,高边坡可视为2个独立边坡来分析计算;高边坡最优坡形为:30 m高边坡单坡高5 m、坡率1∶0.75,窄平台宽度3 m,布置2个宽平台、位置③⑤、宽度10 m;50 m高边坡单坡高5 m、坡率1∶0.75,窄平台宽度3 m,布置4个宽平台、位置③⑤⑧⑨、宽度14 m。宽窄平台优化组合方式可为陕北地区粉黄土高边坡设计和防护工作提供理论依据和实际指导。

     

  • 图  粉黄土粒径累计级配曲线

    Fig. 1  Accumulated cascade curve of the particle size of the powdered loess

    图  粉黄土高边坡坡面冲刷现象(镜向224°)

    Fig. 2  Erosion of the high loess slope (mirror direction 224°)

    图  2个高边坡平台设计

    ①—⑨为平台编号,同时表示平台位置;Pk为宽平台;PZ为窄平台

    Fig. 3  Platform locations of the two high slopes

    图  30 m高边坡单个宽平台时塑性应变区

    Fig. 4  Plastic strain area of a single-wide platform of the 30 m high slope

    图  30 m高边坡2个宽平台时塑性应变区分布

    Fig. 5  Plastic strain area of double-wide platforms of the 30 m high slope

    图  30 m高边坡3个宽平台时塑性应变区分布

    Fig. 6  Plastic strain area of three-wide platforms of the 30 m high slope

    图  50 m高边坡3个宽平台时塑性应变区分布

    Fig. 7  Plastic strain area of three-wide platforms of the 50 m high slope

    图  50 m高边坡4个宽平台时塑性应变区

    Fig. 8  Plastic strain area of four-wide platforms of the 50 m high slope

    图  不同高边坡宽平台数量和位置与稳定系数关系

    Fig. 9  Relationship between the number and position of wide platforms and the stability coefficient in different high slopes

    图  10  不同高边坡开挖量与稳定系数关系

    Fig. 10  Relationship between the excavation quantity and stability coefficient in different high slopes

    表  1  高边坡野外调查情况

    Table  1  Field survey of high slopes

    序号调查边坡边坡概况平台形式破坏模式防护措施防护效果边坡照片
    1禾草沟煤矿
    自建高边坡
    总坡高30 m;
    三级放坡;
    平均坡率1∶0.5
    等距阶状坡坡面冲刷+
    滑塌
    分级削坡较差
    2禾草沟煤
    矿高边坡
    总坡高50 m;
    十级放坡;
    平均坡率1∶0.6
    等距阶状坡坡面冲刷+
    滑塌+剥落
    分级削坡较差
    3车村煤矿
    高边坡
    总坡高45 m;
    十级放坡;
    平均坡率1∶0.8
    等距阶状坡局部坡面
    冲刷+滑塌
    分级削坡+截排水+
    护脚+绿化
    良好
    4志丹旅游专
    线高边坡
    总坡高108 m;
    十八级放坡;
    平均坡率1∶0.6
    宽窄平台坡坡面冲刷分级削坡良好
    下载: 导出CSV

    表  2  研究区土体基本物理性质

    Table  2  Basic physical properties of the soils in the study area

    土体含水率ω/%饱和含水率ωsat/%相对密度容重γ/(kN·m−3)塑性指数Ip/%液性指数IL/%渗透系数K/(cm·s−1)弹性模量E/MPa泊松比υ黏聚力c/kPa内摩擦角φ/(°)
    粉黄土9.832.62.6914.88.8–1.104.58×10−5350.320.2024.48
    下载: 导出CSV

    表  3  坡率设计参数取值

    Table  3  Design parameters of the slope ratio

    参数粉黄土取值
    单宽降雨强度p/(m·s–1)9.3×10−7
    坡面入渗率i/(cm·min–1)3.492×10−3
    坡面粗糙度μ0.05
    土颗粒粒径D/mm0.07
    土颗粒的饱和容重γs/(kN·m–3)26.9
    水密度ρ/(g·cm–3)1
    水容重γw/(kN·m–3)10
    下载: 导出CSV

    表  4  粉黄土坡率临界取值

    Table  4  Critical values of the slope ratio of the powdered loess

    坡长/m临界坡率坡高/m
    4.51∶0.633.81
    5.01∶0.664.17
    5.51∶0.694.53
    6.01∶0.724.87
    6.51∶0.755.20
    7.01∶0.785.52
    7.51∶0.805.86
    8.01∶0.846.13
    8.51∶0.876.41
    9.01∶0.906.69
    9.51∶0.936.96
    10.01∶0.967.21
    10.51∶0.997.46
    11.01∶1.037.66
    11.51∶1.067.89
    12.01∶1.108.07
    12.51∶1.138.28
    下载: 导出CSV
  • [1] 叶万军,刘忠祥,董西好. 基于能量判据的某黄土高边坡优化设计[J]. 科学技术与工程,2017,17(20):213−218. YE Wanjun,LIU Zhongxiang,DONG Xihao. Optimization design of high loess slope based on energy criterion[J]. Science Technology and Engineering,2017,17(20):213−218.. doi: 10.3969/j.issn.1671-1815.2017.20.037

    YE Wanjun, LIU Zhongxiang, DONG Xihao. Optimization design of high loess slope based on energy criterion[J]. Science Technology and Engineering, 2017, 17(20): 213–218.. doi: 10.3969/j.issn.1671-1815.2017.20.037
    [2] 徐永建,牛彦平,胡少雷. 浅谈黄土高边坡变形破坏特征[J]. 中国新技术新产品,2020(9):132−133. XU Yongjian,NIU Yanping,HU Shaolei. Discussion on the deformation and destruction characteristics of loess high slope[J]. New Technology & New Products of China,2020(9):132−133.

    XU Yongjian, NIU Yanping, HU Shaolei. Discussion on the deformation and destruction characteristics of loess high slope[J]. New Technology & New Products of China, 2020(9): 132–133.
    [3] 郑秀红. 浅谈黄土高边坡变形破坏特征[J]. 科技创新与应用,2017(14):149−150. ZHENG Xiuhong. Discussion on the deformation and destruction characteristics of loess high slope[J]. Technology Innovation and Application,2017(14):149−150.

    ZHENG Xiuhong. Discussion on the deformation and destruction characteristics of loess high slope[J]. Technology Innovation and Application, 2017(14): 149–150.
    [4] 蒲小武,王兰民,吴志坚,等. 兰州丘陵沟壑区挖方黄土高边坡面临的工程地质问题及稳定性分析[J]. 地震工程学报,2016,38(5):787−794. PU Xiaowu,WANG Lanmin,WU Zhijian,et al. Engineering geological problems of loess high excavation slope in loess hilly and gully region of Lanzhou and its stability analysis[J]. China Earthquake Engineering Journal,2016,38(5):787−794.. doi: 10.3969/j.issn.1000-0844.2016.05.0787

    PU Xiaowu, WANG Lanmin, WU Zhijian, et al. Engineering geological problems of loess high excavation slope in loess hilly and gully region of Lanzhou and its stability analysis[J]. China Earthquake Engineering Journal, 2016, 38(5): 787–794.. doi: 10.3969/j.issn.1000-0844.2016.05.0787
    [5] 巨能攀,赵建军,邓辉,等. 公路高边坡稳定性评价及支护优化设计[J]. 岩石力学与工程学报,2009,28(6):1152−1161. JU Nengpan,ZHAO Jianjun,DENG Hui,et al. Stability evaluation of high slope for highways and optimized support design[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(6):1152−1161.. doi: 10.3321/j.issn:1000-6915.2009.06.009

    JU Nengpan, ZHAO Jianjun, DENG Hui, et al. Stability evaluation of high slope for highways and optimized support design[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6): 1152–1161.. doi: 10.3321/j.issn:1000-6915.2009.06.009
    [6] 许宇明. 基于FLAC3D的山区高速公路高边坡支护方案优化设计[J]. 公路工程,2015,40(6):145−148. XU Yuming. Optimization design of expressway in mountain area slope support scheme based on FLAC3D[J]. Highway Engineering,2015,40(6):145−148.. doi: 10.3969/j.issn.1674-0610.2015.06.030

    XU Yuming. Optimization design of expressway in mountain area slope support scheme based on FLAC3D[J]. Highway Engineering, 2015, 40(6): 145–148.. doi: 10.3969/j.issn.1674-0610.2015.06.030
    [7] 叶万军. 基于可靠度理论的黄土高边坡优化设计[D]. 西安: 长安大学, 2003.

    YE Wanjun. Reliability applied to stability analysis of loess slope[D]. Xi’an: Chang’an University, 2003.
    [8] 辛立光,李典庆,曹子君. 基于概率充分因子的高效土质边坡可靠度优化设计[J]. 武汉大学学报(工学版),2016,49(5):696−700. XIN Liguang,LI Dianqing,CAO Zijun. Efficient reliability−based design optimization in soil slope using probability sufficiency factor[J]. Engineering Journal of Wuhan University,2016,49(5):696−700.

    XIN Liguang, LI Dianqing, CAO Zijun. Efficient reliability–based design optimization in soil slope using probability sufficiency factor[J]. Engineering Journal of Wuhan University, 2016, 49(5): 696–700.
    [9] 张宏伟,曹智,程玉竹,等. 基于拓扑优化方法的开挖边坡设计[J]. 水利水运工程学报,2015(2):73−78. ZHANG Hongwei,CAO Zhi,CHENG Yuzhu,et al. Slope design based on a topology optimization method[J]. Hydro–Science and Engineering,2015(2):73−78.

    ZHANG Hongwei, CAO Zhi, CHENG Yuzhu, et al. Slope design based on a topology optimization method[J]. Hydro–Science and Engineering, 2015(2): 73–78.
    [10] 叶万军,杨更社. 基于坡面稳定的黄土路堑高边坡优化设计[J]. 岩土力学,2009,30(2):531−535. YE Wanjun,YANG Gengshe. Cutting high loess slope optimization design based on slope surface stability[J]. Rock and Soil Mechanics,2009,30(2):531−535.. doi: 10.3969/j.issn.1000-7598.2009.02.043

    YE Wanjun, YANG Gengshe. Cutting high loess slope optimization design based on slope surface stability[J]. Rock and Soil Mechanics, 2009, 30(2): 531–535.. doi: 10.3969/j.issn.1000-7598.2009.02.043
    [11] 胡斌,王伟,张腾,等. 露天矿最终边坡角优化设计模拟分析[J]. 金属矿山,2013(9):14−18. HU Bin,WANG Wei,ZHANG Teng,et al. Simulation analysis of the final sloping angle design and optimization on the open–pit mine[J]. Metal Mine,2013(9):14−18.

    HU Bin, WANG Wei, ZHANG Teng, et al. Simulation analysis of the final sloping angle design and optimization on the open–pit mine[J]. Metal Mine, 2013(9): 14–18.
    [12] 宋志飞,辛晓平,贺言言. 某露天矿边坡稳定性分析与优化设计[J]. 煤矿安全,2014,45(7):216−218. SONG Zhifei,XIN Xiaoping,HE Yanyan. Analysis of slope stability and optimization design in an open–pit mine[J]. Safety in Coal Mines,2014,45(7):216−218.

    SONG Zhifei, XIN Xiaoping, HE Yanyan. Analysis of slope stability and optimization design in an open–pit mine[J]. Safety in Coal Mines, 2014, 45(7): 216–218.
    [13] 李鹏,刘世杰,郭敏,等. 汽车振动作用下黄土阶状坡动力响应规律[J]. 公路交通科技,2019,36(7):53−62. LI Peng,LIU Shijie,GUO Min,et al. Dynamic response rule of loess stepped slope subjected to vehicle vibration[J]. Journal of Highway and Transportation Research and Development,2019,36(7):53−62.

    LI Peng, LIU Shijie, GUO Min, et al. Dynamic response rule of loess stepped slope subjected to vehicle vibration[J]. Journal of Highway and Transportation Research and Development, 2019, 36(7): 53–62.
    [14] 王光谦,李铁键,薛海,等. 流域泥沙过程机理分析[J]. 应用基础与工程科学学报,2006,14(4):455−462. WANG Guangqian,LI Tiejian,XUE Hai,et al. Mechanism analysis of watershed sediment processes[J]. Journal of Basic Science and Engineering,2006,14(4):455−462.. doi: 10.3969/j.issn.1005-0930.2006.04.001

    WANG Guangqian, LI Tiejian, XUE Hai, et al. Mechanism analysis of watershed sediment processes[J]. Journal of Basic Science and Engineering, 2006, 14(4): 455–462.. doi: 10.3969/j.issn.1005-0930.2006.04.001
    [15] 王全九,来剑斌,李毅. Green–Ampt模型与Philip入渗模型的对比分析[J]. 农业工程学报,2002,18(2):13−16. WANG Quanjiu,LAI Jianbin,LI Yi. Comparison of Green–Ampt model with Philip infiltration model[J]. Transactions of the Chinese Society of Agricultural Engineering,2002,18(2):13−16.. doi: 10.3321/j.issn:1002-6819.2002.02.004

    WANG Quanjiu, LAI Jianbin, LI Yi. Comparison of Green–Ampt model with Philip infiltration model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2002, 18(2): 13–16.. doi: 10.3321/j.issn:1002-6819.2002.02.004
    [16] 李毅,王全九,邵明安,等. Green–Ampt入渗模型及其应用[J]. 西北农林科技大学学报(自然科学版),2007,35(2):225−230. LI Yi,WANG Quanjiu,SHAO Ming’an,et al. Green–Ampt model and its application[J]. Journal of Northwest A & F University (Natural Science Edition),2007,35(2):225−230.

    LI Yi, WANG Quanjiu, SHAO Mingan, et al. Green–Ampt model and its application[J]. Journal of Northwest A & F University(Natural Science Edition), 2007, 35(2): 225–230.
    [17] 倪三川. 模拟降雨条件下黄土区植被坡面产流下渗与侵蚀特征研究[D]. 西宁: 青海大学, 2008.

    NI Sanchuan. Study on characteristics of runoff infiltration and erosion on the vegetation slope in the loess area under the condition of artificial rainfall simulation[D]. Xining: Qinghai University, 2008.
    [18] 曾昌禄,李荣建,关晓迪,等. 不同雨强条件下黄土边坡降雨入渗特性模型试验研究[J]. 岩土工程学报,2020,42(增刊1):111−115. ZENG Changlu,LI Rongjian,GUAN Xiaodi,et al. Experimental study on rainfall infiltration characteristics of loess slopes under different rainfall intensities[J]. Chinese Journal of Geotechnical Engineering,2020,42(Sup.1):111−115.

    ZENG Changlu, LI Rongjian, GUAN Xiaodi, et al. Experimental study on rainfall infiltration characteristics of loess slopes under different rainfall intensities[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(Sup. 1): 111–115.
    [19] 廖华容. 路基边坡冲刷机理及防护研究[D]. 长沙: 湖南大学, 2012.

    LIAO Huarong. Study on slope erosion mechanism and protective of subgrade[D]. Changsha: Hunan University, 2012.
    [20] 张栋樑,王炳龙. 边坡植物防护计算方法的研究[J]. 华东交通大学学报,2006,23(1):52−55. ZHANG Dongliang,WANG Binglong. Research on calculation way for slope plant protection[J]. Journal of East China Jiaotong University,2006,23(1):52−55.. doi: 10.3969/j.issn.1005-0523.2006.01.014

    ZHANG Dongliang, WANG Binglong. Research on calculation way for slope plant protection[J]. Journal of East China Jiaotong University, 2006, 23(1): 52–55.. doi: 10.3969/j.issn.1005-0523.2006.01.014
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  9
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-15
  • 修回日期:  2022-01-14
  • 发布日期:  2022-06-25
  • 网络出版日期:  2022-06-11

目录

    /

    返回文章
    返回