Review of the progress of geological research on coalbed methane co-production
-
摘要: 煤层气合采是提高多煤层区煤层气开发效率的重要途径,但成藏作用的特殊性决定合采方式与产能效果复杂多变,高效开发面临较大挑战。我国煤层气地质工作者围绕多煤层煤层气成藏与合采可行性开展大量基础研究与工程实践,取得丰富的阶段性成果,为深化煤层气开发地质理论、推动产业发展提供有力支撑。从叠置煤层气系统成藏机理、合采地质约束条件、合采可行性判识方法、合采储层伤害4个方面,系统分析评述我国煤层气合采地质领域的最新研究进展,以期为后续研究开展、工程实施与产业建设提供参考。主要认识可概括为:(1) 深化了叠置煤层气系统成藏的层序控气机理以及成岩作用与地应力的后期改造效应;构建了煤系地下水环境化学封闭指数,为判识含气系统叠置性及流体动力条件提供了新的参数,结合流体压力剖面识别出3类含气系统叠置地质模式(增长型、衰减型和稳定型);进一步将叠置煤层气系统理念扩展到煤系气范畴,提出煤系复合储层叠置含气系统“共采兼容性”理论与方法体系,并应用于煤系气合采先导示范工程,取得初步应用成效;(2) 华北石炭−二叠系(太原−山西组)与黔西−滇东上二叠统(长兴−龙潭组)是煤层气合采研究与工程实践的热点区域(层域),压力系统及渗透性差异是合采中最受关注的地质因素。华北山西组、太原组的水动力系统与供液能力差异是制约合采效果的重要因素,黔西−滇东地区合采煤层的最大层间跨度、累计煤厚、煤体结构受到更多关注,表层水干扰是制约织金区块煤层气合采效率的关键;(3) 产能分析、物理模拟、数值模拟、产出水地球化学分析是煤层气合采可行性与干扰判识的重要方法,提出了基于产出水地球化学解析合采井产出水源和判识干扰程度的基本思路、技术图版和评价流程及基于产能曲线分峰剥离的产层贡献分析方法,技术方法的不断成熟、创新为煤层气合采方案、工艺优化与效率提升提供了有力支撑;(4) 煤层气合采对地质条件与工程扰动更为敏感,易诱发储层伤害,涉及产层暴露诱发的贾敏效应与气锁伤害,压力系统与渗透性差异诱发的应力与速度敏感伤害。均一化储层改造、分压力系统开采(分时间或分空间)、精细化排采设计与管控是降低储层伤害的有效途径。Abstract: Coalbed methane (CBM) co-production is an important way to improve the efficiency of CBM development in multi-seam areas, but the special nature of reservoir formation makes the co-mining method and production effect complex and variable, which presents challenges for efficient development. Experts in the field of CBM from China have carried out a lot of basic research and engineering practice on CBM reservoir formation and the feasibility of co-production in multiple seams, which have gained fruitful results, providing strong support for deepening the CBM geological theory and promoting industrial development. To provide reference for subsequent research, engineering implementation and industrial construction, this paper systematically analyzes and reviews the latest research progress in the field of CBM co-production geology in China from four aspects: reservoir formation theory of stacked CBM systems; co-production geological constraints; co-production feasibility identification method; and co-production reservoir damage. The main understandings can be summarized as follows. (1) The sequence gas control mechanism of the accumulation of the stacked CBM systems and the later modification effect of rock formation and ground stress are deepened. The hydrogeochemical closed index of coal-measure groundwater environment is constructed, which provides a new parameter to identify the stacked gas-bearing systems and hydrodynamic conditions, and three types of stacked geological patterns of gas-bearing systems (growth type, decay type and stable type) are identified by using fluid pressure profiles. The concept of stacked CBM system is further extended to the category of coal measure gas, and the theory and method system of “co-mining compatibility” of stacked gas-bearing systems based on coal-measure composite reservoirs is proposed and applied to the pilot demonstration project of coal-measure gas co-production, which has a chieved preliminary results. (2) The Carboniferous-Permian (Taiyuan-Shanxi Formation) in North China and Late Permian (Changxing-Longtan Formation) in Western Guizhou and Eastern Yunnan are the hotspot areas for CBM co-production research and engineering practice, and the fluid pressure system and permeability differences are the most concerned geological factors in co-production. The difference in hydrodynamic conditions and fluid supply capacity of Shanxi Formation and Taiyuan Formation is an important factor limiting the CBM co-production in North China. The maximum inter-seam span, cumulative thickness, coal body structure of the coal seam in co-production in Western Guizhou and Eastern Yunnan have received more attention, and interference from shallow groundwater is the key restricting the efficiency of CBM co-production in the Zhijin Block. (3) Productivity analysis, physical simulation, numerical simulation, and geochemical analysis of produced water are important methods to identify the feasibility and interference of CBM co-production. The basic idea, technical template and evaluation process for analyzing the produced water source and identifying the degree of fluid interference in the co-production wells based on the geochemistry of produced water, as well as the production layer contribution analysis method based on the peaking and identification of the gas-production curve, have been proposed. The continuous maturity and innovation of technical methods provide strong support for the optimization and efficiency improvement of CBM co-production engineering. (4) CBM co-production is more sensitive to geological conditions and engineering disturbances, and is prone to induce reservoir damage, involving Jamin effect and airlock damage induced by production layer exposure, as well as stress-sensitive and velocity-sensitive damage induced by the pressure system and permeability differences. Homogenized reservoir reconstruction, separated-pressure system development (separated-time or separated-space), and refined drainage design and control are effective ways to reduce reservoir damage.
-
图 3 煤层气合采地质兼容性判识图版[69]
Fig. 3 Template for discriminating geological compatibility of CBM co-production
图 4 沁水盆地煤层气合层排采产出水来源交汇判识[91]
Fig. 4 Intersecting apportionment plots of produced-water sources from co-producing CBM wells in Qinshui Basin
表 1 部分研究者关于煤层气合采可行性阈值统计
Table 1 Statistics on the feasibility threshold of CBM co-production by some researchers
研究区 渗透率 储层压
力(梯度)
差/(MPa·hm−1)临界解吸
压力差/
MPa供液能力
差(产液
量,m3/d)顶底板
岩性含气量差/
(m3·t−1)单煤层厚
度/m与
结构顶底板
厚度/m顶底板
与煤层
力学性
质比含气
饱和
度差/%产气液
面高度
差/m煤层
间距/
m最大
跨度/
m沁水
盆地南部樊庄
区块[8]同一数量级 ≤0.5 泥岩 >5(抗张强度) 南部寺河
矿区[9]相差不大 ≤0.5 ≤15 ≤50 北部寿阳
区块[42]同一数量级 <0.3 <0.3 <5 泥岩、砂质泥岩 >2 >2(弹性模量) 樊庄潘
庄[43]差值≤1×10−3 μm2 <0.08 <0.9 南部郑庄
区块[44]套压≥0.2 MPa 鄂尔多
斯盆地
东缘延川南
区块[45]同一
数量级<1.2 MPa(压力梯度同一数量级) <1.2 ≤5 砂岩、
泥岩≥0.5 ≥0.5 ≥2(泊松比) ≥10 吴堡矿
区[10]同属一套水动力系统 泥岩等隔水层 柳林区
块[11]同一
数量级<1 MPa <10 泥岩、弱含水砂岩 <8 ≥0.5 <30 临汾地
区[46]同一
数量级<1 MPa(压力梯度同一数量级) <5 砂岩、
泥岩<4 抗压强度差<5 MPa <10 大宁−吉
县区块[47]差异大有利,且低产水层供液<3 临兴区
块[48]<启动压力梯度
(气水倒灌阈值)黔西−滇
东地区滇东黔西某区块[49] 同一
数量级≤0.5 >5 黔西松
河区块[50]<0.1 剔除构
造煤<100 云南恩
洪区块[51]>0.5(原生−碎裂结构煤) 黔西−滇
东地区[52]≤0.15 ≤最上部煤层初始液柱压力 剔除碎粒煤、糜
棱煤依赖储层压力差 黔西−滇
东地区[53]据原始差异均衡改造 滇东高压、低压层比值:1.08 原生结构煤和碎
裂煤比值:黔280
滇120<50 煤层累厚9 m 滇60黔100 其他
地区铁法盆
地大兴
井田[54]≤0.7 <70 阜康白杨
河矿区[55]相近 ≤0.5 相近 相近 非含水层 较小 出现频次 10 16 5 7 7 2 6 2 4 3 3 3 4 表 2 油气藏多层合采物理模拟研究成果统计
Table 2 Statistics of research on physical simulation of multi-layer co-production of oil and gas reservoirs
研究区 模拟类型 渗透率差(级差) 储层压力差 气井配产 接替方式 规律 合采层数 油气藏类型 青海涩北
气田[61]三层合采 影响产层贡献,尤其早期 层间干扰,倒灌一般发生于早期 增大配产将降低低渗层的产量贡献率 低渗层接替高渗层 早期以高渗层贡献为主,后期低渗层逐渐被动用 ≤4 疏松砂岩气藏 鄂尔多斯盆地大牛地气田[57] 双层合采 影响产层贡献,尤其早期 屏蔽低压层 低渗层接替高渗层效果较好,接替点压力不宜过低 低渗层中后期产量贡献率上升 致密砂岩气藏 鄂尔多斯盆地苏里格气田[62] 双层合采 层间干扰,倒灌发生于初期 增大初期配产有助于减小层间干扰 低压层接替高压层 控制层间初始压差 致密砂岩气藏 某区块[63] 双层/三层合采,平板模型 影响产层贡献与最终采收率 层数越多,总体采出程度越低 特低渗油藏 四川盆地
安岳气田[58]三层合采 产层贡献与总采收率 离边底水较近的井,不宜过早打开高渗层,可在开发后期补孔 高渗层前期贡献大,低渗层贡献主要在中后期 缝洞型碳酸盐岩气藏 某气田[64] 双层合采 层间干扰,倒灌一般发生于初期 适当增加配产有利减小层间干扰 低渗气藏 中海油荔湾
3-1气田[65]三层合采 封闭边界条件下合采初期产量按各层地层系数进行分配,后期按地层储量比分配 凝析气藏 某气田[66] 双层合采 影响产层贡献,尤其早期 影响产层贡献,但弱于渗透率的影响 渗透率差异越大,气藏合采的压力条件越苛刻 砂岩气藏 贵州金佳
煤矿[67]四层合采,水平井 高压层抑制低压层,甚至产生倒灌 按储层压力由大到小递进排采 递进合采能抑制层间干扰,防止倒灌 煤层气藏 滇东老厂
区块[68]双层合采 强烈影响
产层贡献主要影响上部产层产气贡献,差异越大,干扰越强 煤层气藏 黔西织金
区块[69]双层合采 基于渗透率级差与压力差建立合采地质兼容性判识图版 煤层气藏 -
[1] 秦勇,熊孟辉,易同生,等. 论多层叠置独立含煤层气系统—以贵州织金–纳雍煤田水公河向斜为例[J]. 地质论评,2008,54(1):65−70. QIN Yong,XIONG Menghui,YI Tongsheng,et al. On unattached multiple superposed coalbed−methane system:In a case of the Shuigonghe syncline,Zhijin−Nayong coalfield,Guizhou[J]. Geological Review,2008,54(1):65−70.. doi: 10.3321/j.issn:0371-5736.2008.01.008 [2] 秦勇,申建,沈玉林. 叠置含气系统共采兼容性—煤系“三气”及深部煤层气开采中的共性地质问题[J]. 煤炭学报,2016,41(1):14−23. QIN Yong,SHEN Jian,SHEN Yulin. Joint mining compatibility of superposed gas−bearing systems:A general geological problem for extraction of three natural gases and deep CBM in coal series[J]. Journal of China Coal Society,2016,41(1):14−23. [3] 孟召平,刘翠丽,纪懿明. 煤层气/页岩气开发地质条件及其对比分析[J]. 煤炭学报,2013,38(5):728−736. MENG Zhaoping,LIU Cuili,JI Yiming. Geological conditions of coalbed methane and shale gas exploitation and their comparison analysis[J]. Journal of China Coal Society,2013,38(5):728−736. [4] 曹代勇,姚征,李靖. 煤系非常规天然气评价研究现状与发展趋势[J]. 煤炭科学技术,2014,42(1):89−92. CAO Daiyong,YAO Zheng,LI Jing. Evaluation status and development trend of unconventional gas in coal measure[J]. Coal Science and Technology,2014,42(1):89−92. [5] 傅雪海,德勒恰提·加娜塔依,朱炎铭,等. 煤系非常规天然气资源特征及分隔合采技术[J]. 地学前缘,2016,23(3):36−40. FU Xuehai,JIANATAYI D,ZHU Yanming,et al. Resources characteristics and separated reservoirs drainage of unconventional gas in coal measures[J]. Earth Science Frontiers,2016,23(3):36−40. [6] 梁冰,石迎爽,孙维吉,等. 中国煤系“三气”成藏特征及共采可能性[J]. 煤炭学报,2016,41(1):167−173. LIANG Bing,SHI Yingshuang,SUN Weiji,et al. Reservoir forming characteristics of “the three gases” in coal measure and the possibility of commingling in China[J]. Journal of China Coal Society,2016,41(1):167−173. [7] ZOU Caineng,YANG Zhi,HUANG Shipeng,et al. Resource types,formation,distribution and prospects of coal−measure gas[J]. Petroleum Exploration and Development,2019,46(3):451−462.. doi: 10.1016/S1876-3804(19)60026-1 [8] 倪小明,苏现波,李广生. 樊庄地区3#和15#煤层合层排采的可行性研究[J]. 天然气地球科学,2010,21(1):144−149. NI Xiaoming,SU Xianbo,LI Guangsheng. Feasibility of multi–layer drainage for No.3 and No.15 coal seams in the Fanzhuang area[J]. Natural Gas Geoscience,2010,21(1):144−149. [9] 李国彪,李国富. 煤层气井单层与合层排采异同点及主控因素[J]. 煤炭学报,2012,37(8):1354−1358. LI Guobiao,LI Guofu. Study on the differences and main controlling factors of the coalbed methane wells between single layer and multi−layer drainage[J]. Journal of China Coal Society,2012,37(8):1354−1358. [10] 汪万红,郑玉柱. 陕西省吴堡矿区煤层气井产层组合研究[J]. 煤田地质与勘探,2012,40(5):31−33. WANG Wanhong,ZHENG Yuzhu. Combination of gas−producing layers of CBM wells in Wubu mining area[J]. Coal Geology & Exploration,2012,40(5):31−33. [11] 孟艳军,汤达祯,许浩,等. 煤层气开发中的层间矛盾问题—以柳林地区为例[J]. 煤田地质与勘探,2013,41(3):29−33. MENG Yanjun,TANG Dazhen,XU Hao,et al. Interlayer contradiction problem in coalbed methane development:A case study in Liulin area[J]. Coal Geology & Exploration,2013,41(3):29−33.. doi: 10.3969/j.issn.1001-1986.2013.03.007 [12] 赵俊龙,汤达祯,林文姬,等. 韩城矿区煤层气井分层合采产能特征及分布模式[J]. 煤炭科学技术,2015,43(9):80−86. ZHAO Junlong,TANG Dazhen,LIN Wenji,et al. Productivity characteristics and distribution modes of multi−layer drainage coalbed methane wells in Hancheng mining area[J]. Coal Science and Technology,2015,43(9):80−86. [13] 康永尚,陈晶,张兵,等. 沁水盆地寿阳勘探区煤层气井排采水源层判识[J]. 煤炭学报,2016,41(9):2263−2272. KANG Yongshang,CHEN Jing,ZHANG Bing,et al. Identification of aquifers influencing the drainage of coalbed methane wells in Shouyang exploration area,Qinshui Basin[J]. Journal of China Coal Society,2016,41(9):2263−2272. [14] 郭晨,秦勇,夏玉成,等. 基于氢、氧同位素的煤层气合排井产出水源判识:以黔西地区比德–三塘盆地上二叠统为例[J]. 石油学报,2017,38(5):493−501. GUO Chen,QIN Yong,XIA Yucheng,et al. Source discrimination of produced water from CBM commingling wells based on the hydrogen and oxygen isotopes:A case study of the Upper Permian,Bide−Santang Basin,western Guizhou area[J]. Acta Petrolei Sinica,2017,38(5):493−501.. doi: 10.7623/syxb201705002 [15] DOW W G. Application of oil−correlation and source−rock data to exploration in Williston Basin[J]. AAPG Bulletin,1974,58(7):1253−1262. [16] MAGOON L B. Petroleum systems of the United States[J]. US Geological Survey Bulletin,1988,1870:2−15. [17] MAGOON L B,DOW W G. The petroleum system−from source to trap[J]. American Association of Petroleum Geologists,1994,60:1−24. [18] 张厚福,孙红军,梅红. 多旋回构造变动区的油气系统[J]. 石油学报,1999,20(1):8−12. ZHANG Houfu,SUN Hongjun,MEI Hong. The petroleum system in the region of poly cyclic tectonic movement[J]. Acta Petrolei Sinica,1999,20(1):8−12.. doi: 10.3321/j.issn:0253-2697.1999.01.002 [19] 赵文智,何登发,池英柳,等. 中国复合含油气系统的基本特征与勘探技术[J]. 石油学报,2001,22(1):6−13. ZHAO Wenzhi,HE Dengfa,CHI Yingliu,et al. Major characteristics and exploration technology of multi−source petroleum systems in China[J]. Acta Petrolei Sinica,2001,22(1):6−13.. doi: 10.3321/j.issn:0253-2697.2001.01.002 [20] 刘焕杰, 秦勇, 桑树勋. 山西南部煤层气地质[M]. 徐州: 中国矿业大学出版社, 1998. [21] SU Xianbo,LIN Xiaoying,ZHAO Mengjun,et al. The Upper Paleozoic coalbed methane system in the Qinshui Basin,China[J]. AAPG Bulletin,2005,89(1):81−100.. doi: 10.1306/07300403125 [22] 朱志敏,沈冰,路爱平,等. 阜新盆地白垩系阜新组煤层气系统[J]. 石油勘探与开发,2007,34(2):181−186. ZHU Zhimin,SHEN Bing,LU Aiping,et al. Cretaceous Fuxin Formation coalbed methane system in Fuxin Basin[J]. Petroleum Exploration and Development,2007,34(2):181−186.. doi: 10.3321/j.issn:1000-0747.2007.02.010 [23] SHEN Yulin,QIN Yong,WANG G G X,et al. Sedimentary control on the formation of a multi−superimposed gas system in the development of key layers in the sequence framework[J]. Marine and Petroleum Geology,2017,88:268−281.. doi: 10.1016/j.marpetgeo.2017.08.024 [24] 杨兆彪,秦勇,陈世悦,等. 多煤层储层能量垂向分布特征及控制机理[J]. 地质学报,2013,87(1):139−144. YANG Zhaobiao,QIN Yong,CHEN Shiyue,et al. Controlling mechanism and vertical distribution characteristics of reservoir energy of multi−coalbeds[J]. Acta Geologica Sinica,2013,87(1):139−144.. doi: 10.3969/j.issn.0001-5717.2013.01.014 [25] 杨兆彪,秦勇. 地应力条件下的多层叠置独立含气系统的调整研究[J]. 中国矿业大学学报,2015,44(1):70−75. YANG Zhaobiao,QIN Yong. A study of the unattached multiple superposed coalbed−methane system under stress conditions[J]. Journal of China University of Mining & Technology,2015,44(1):70−75. [26] 郭晨,卢玲玲. 黔西煤层气成藏特性空间分异及其对开发的启示[J]. 煤炭学报,2016,41(8):2006−2016. GUO Chen,LU Lingling. Spatial distribution and variation of coalbed methane reservoir characteristics and its significance for CBM development in western Guizhou[J]. Journal of China Coal Society,2016,41(8):2006−2016. [27] XU Hongjie,SANG Shuxun,YANG Jingfen,et al. Selection of suitable engineering modes for CBM development in zones with multiple coalbeds:A case study in western Guizhou Province,Southwest China[J]. Journal of Natural Gas Science and Engineering,2016,36:1264−1275.. doi: 10.1016/j.jngse.2016.06.025 [28] CHEN Shida,TANG Dazhen,TAO Shu,et al. In–situ stress,stress−dependent permeability,pore pressure and gas−bearing system in multiple coal seams in the Panguan area,western Guizhou,China[J]. Journal of Natural Gas Science and Engineering,2018,49:110−122.. doi: 10.1016/j.jngse.2017.10.009 [29] JU Wei,YANG Zhaobiao,QIN Yong,et al. Characteristics of in–situ stress state and prediction of the permeability in the Upper Permian coalbed methane reservoir,western Guizhou region,SW China[J]. Journal of Petroleum Science and Engineering,2018,165:199−211.. doi: 10.1016/j.petrol.2018.02.037 [30] ZHAO Junlong,TANG Dazhen,LIN Wenji,et al. In–situ stress distribution and its influence on the coal reservoir permeability in the Hancheng area,eastern margin of the Ordos Basin,China[J]. Journal of Natural Gas Science and Engineering,2019,61:119−132.. doi: 10.1016/j.jngse.2018.09.002 [31] PASHIN J C. Variable gas saturation in coalbed methane reservoirs of the Black Warrior Basin:Implications for exploration and production[J]. International Journal of Coal Geology,2010,82(3/4):135−146.. doi: 10.1016/j.coal.2009.10.017 [32] SHAO Yubao,GUO Yinghai,QIN Yong,et al. Distribution characteristic and geological significance of rare earth elements in Lopingian mudstone of Permian,Panxian County,Guizhou Province[J]. Mining Science and Technology(China),2011,21(4):469−476. [33] TANG Shuling,TANG Dazhen,TANG Jianchao,et al. Controlling factors of coalbed methane well productivity of multiple superposed coalbed methane systems:A case study on the Songhe mine field,Guizhou,China[J]. Energy Exploration & Exploitation,2017,35(6):665−684. [34] CHEN Shida,TANG Dazhen,TAO Shu,et al. Coal reservoir heterogeneity in multicoal seams of the Panguan syncline,western Guizhou,China:Implication for the development of superposed CBM–bearing systems[J]. Energy & Fuels,2018,32(8):8241−8253. [35] 郭晨. 多层叠置含煤层气系统及其开发模式优化: 以黔西比德–三塘盆地上二叠统为例[D]. 徐州: 中国矿业大学, 2015.GUO Chen. Multi–layer superposed CBM system and drainage model optimization: In the case of the Upper Permian Bide−Santang Basin[D]. Xuzhou: China University of Mining and Technology, 2015. [36] 秦勇. 中国煤系气共生成藏作用研究进展[J]. 天然气工业,2018,38(4):26−36. QIN Yong. Research progress of symbiotic accumulation of coal measure gas in China[J]. Natural Gas Industry,2018,38(4):26−36.. doi: 10.3787/j.issn.1000-0976.2018.04.003 [37] 秦勇,吴建光,申建,等. 煤系气合采地质技术前缘性探索[J]. 煤炭学报,2018,43(6):1504−1516. QIN Yong,WU Jianguang,SHEN Jian,et al. Frontier research of geological technology for coal measure gas joint–mining[J]. Journal of China Coal Society,2018,43(6):1504−1516. [38] 秦勇,吴建光,李国璋,等. 煤系气开采模式探索及先导工程示范[J]. 煤炭学报,2020,45(7):2513−2522. QIN Yong,WU Jianguang,LI Guozhang,et al. Patterns and pilot project demonstration of coal measures gas production[J]. Journal of China Coal Society,2020,45(7):2513−2522. [39] 秦勇. 煤系气聚集系统与开发地质研究战略思考[J]. 煤炭学报,2021,46(8):2387−2399. QIN Yong. Strategic thinking on research of coal measure gas accumulation system and development geology[J]. Journal of China Coal Society,2021,46(8):2387−2399. [40] 秦勇, 申建, 史锐. 中国煤系气大产业建设战略价值与战略选择[J/OL]. 煤炭学报: 1–19[2022–2–18]. https://doi.org/10.13225/j.cnki.jccs.YG21.1616.QIN Yong, SHEN Jian, SHI Rui. Strategic value and choice on construction of CMG industry in China[J/OL]. Journal of China Coal Society: 1–19[2022–2–18]. https://doi.org/10.13225/j.cnki.jccs.YG21.1616. [41] 秦勇,申建,沈玉林,等. 苏拉特盆地煤系气高产地质原因及启示[J]. 石油学报,2019,40(10):1147−1157. QIN Yong,SHEN Jian,SHEN Yulin,et al. Geological causes and inspirations for high production of coal measure gas in Surat Basin[J]. Acta Petrolei Sinica,2019,40(10):1147−1157.. doi: 10.7623/syxb201910001 [42] 王振云,唐书恒,孙鹏杰,等. 沁水盆地寿阳区块3号和9号煤层合层排采的可行性研究[J]. 中国煤炭地质,2013,25(11):21−26. WANG Zhenyun,TANG Shuheng,SUN Pengjie,et al. Feasibility study on multi–layer drainage for Nos.3 and 9 coal seams in Shouyang block,Qinshui Basin[J]. China Coal Geology,2013,25(11):21−26.. doi: 10.3969/j.issn.1674-1803.2013.11.05 [43] 张政,秦勇,傅雪海. 沁南煤层气合层排采有利开发地质条件[J]. 中国矿业大学学报,2014,43(6):1019−1024. ZHANG Zheng,QIN Yong,FU Xuehai. The favorable developing geological conditions for CBM multi –layer drainage in southern Qinshui Basin[J]. Journal of China University of Mining & Technology,2014,43(6):1019−1024. [44] 熊章凯,李瑞,王生维,等. 煤层气合层排采流体产出特征及其控制因素[J]. 煤炭科学技术,2018,46(6):143−148. XIONG Zhangkai,LI Rui,WANG Shengwei,et al. Fluid output characteristics and controlling factors of CBM multi–layer drainage[J]. Coal Science and Technology,2018,46(6):143−148. [45] 谢学恒,李小龙,陈贞龙,等. 延川南地区2号和10号煤层分压合采的可行性研究[J]. 油气藏评价与开发,2011,1(3):65−69. XIE Xueheng,LI Xiaolong,CHEN Zhenlong,et al. Research on the feasibility of layered fracture and commingled water drainage & gas production for No.2 and No.10 coal seams in Yanchuannan area[J]. Reservoir Evaluation and Development,2011,1(3):65−69.. doi: 10.3969/j.issn.2095-1426.2011.03.016 [46] 吴双,汤达祯,许浩,等. 临汾地区煤层气井产层组合方式对产能的影响研究[J]. 煤炭工程,2015,47(12):93−96. WU Shuang,TANG Dazhen,XU Hao,et al. Impact of producing layers combination on capacity of coalbed methane well in Linfen Block[J]. Coal Engineering,2015,47(12):93−96. [47] 巢海燕,王延斌,葛腾泽,等. 地层供液能力差异对煤层气合层排采的影响:以大宁–吉县地区古驿背斜西翼为例[J]. 中国矿业大学学报,2017,46(3):606−613. CHAO Haiyan,WANG Yanbin,GE Tengze,et al. Difference in liquid supply capacity of coal seams and its influence on multi –layer drainage of coalbed methane:Taking the west limb of Guyi anticline in Daning–Jixian region as an example[J]. Journal of China University of Mining and Technology,2017,46(3):606−613. [48] 孟尚志,李勇,王建中,等. 煤系“三气”单井筒合采可行性分析:基于现场试验井的讨论[J]. 煤炭学报,2018,43(1):168−174. MENG Shangzhi,LI Yong,WANG Jianzhong,et al. Co–production feasibility of “Three gases” in coal measures:Discussion based on field test well[J]. Journal of China Coal Society,2018,43(1):168−174. [49] 杨兆中,刘云锐,张平,等. 滇东黔西地区多层叠置煤层压裂分层决策方法研究[J]. 煤炭科学技术,2017,45(9):7−12. YANG Zhaozhong,LIU Yunrui,ZHANG Ping,et al. Study on fracturing and slicing decision method of multi layer overlay seam in East Yunnan and West Guizhou[J]. Coal Science and Technology,2017,45(9):7−12. [50] YANG Zhaobiao,ZHANG Zhengguang,QIN Yong,et al. Optimization methods of production layer combination for coalbed methane development in multi–coal seams[J]. Petroleum Exploration and Development,2018,45(2):312−320.. doi: 10.1016/S1876-3804(18)30034-X [51] 姜杉钰,康永尚,杨通保,等. 云南恩洪煤层气区块单井多煤层合采方式探讨[J]. 煤田地质与勘探,2018,46(2):80−89. JIANG Shanyu,KANG Yongshang,YANG Tongbao,et al. Combined CBM drainage of multiple seams by single well in Enhong block,Yunnan Province[J]. Coal Geology & Exploration,2018,46(2):80−89.. doi: 10.3969/j.issn.1001-1986.2018.02.013 [52] 吴财芳,刘小磊,张莎莎. 滇东黔西多煤层地区煤层气“层次递阶”地质选区指标体系构建[J]. 煤炭学报,2018,43(6):1647−1653. WU Caifang,LIU Xiaolei,ZHANG Shasha. Construction of index system of “Hierarchical progressive”geological selection of coalbed methane in multiple seam area of eastern Yunnan and western Guizhou[J]. Journal of China Coal Society,2018,43(6):1647−1653. [53] 秦勇,吴建光,张争光,等. 基于排采初期生产特征的煤层气合采地质条件分析[J]. 煤炭学报,2020,45(1):241−257. QIN Yong,WU Jianguang,ZHANG Zhengguang,et al. Analysis of geological conditions for coalbed methane co–production based on production characteristics in early stage of drainage[J]. Journal of China Coal Society,2020,45(1):241−257. [54] 黄华州,桑树勋,苗耀,等. 煤层气井合层排采控制方法[J]. 煤炭学报,2014,39(增刊2):422−431. HUANG Huazhou,SANG Shuxun,MIAO Yao,et al. Drainage control of single vertical well with multi–hydraulic fracturing layers for coalbed methane development[J]. Journal of China Coal Society,2014,39(Sup.2):422−431. [55] 雍晓艰,周梓欣. 阜康白杨河矿区合层排采影响因素分析[J]. 煤炭与化工,2017,40(10):1−5. YONG Xiaojian,ZHOU Zixin. Analysis of affecting factors of multi–layer drainage at Fukang Baiyanghe mining area[J]. Coal and Chemical Industry,2017,40(10):1−5. [56] 秦勇,申建. 论深部煤层气基本地质问题[J]. 石油学报,2016,37(1):125−136. QIN Yong,SHEN Jian. On the fundamental issues of deep coalbed methane geology[J]. Acta Petrolei Sinica,2016,37(1):125−136. [57] 黄华州,桑树勋,毕彩芹,等. 煤层群煤系多套含气系统特征及其合采效果:以铁法盆地阜新组为例[J]. 沉积学报,2021,39(3):645−655. HUANG Huazhou,SANG Shuxun,BI Caiqin,et al. Characteristics of multi –gas –bearing systems within coal seam groups and the effect of commingled production:A case study on Fuxin Formation,Cretaceous,Tiefa Basin[J]. Acta Sedimentologica Sinica,2021,39(3):645−655. [58] 谭玉涵,郭京哲,郑峰,等. 气井多层合采渗流特征及接替生产物理模拟[J]. 石油与天然气地质,2015,36(6):1009−1015. TAN Yuhan,GUO Jingzhe,ZHENG Feng,et al. Physical simulation on seepage features of commingled production and right time of production conversion for gas wells[J]. Oil & Gas Geology,2015,36(6):1009−1015.. doi: 10.11743/ogg20150616 [59] 王璐,杨胜来,刘义成,等. 缝洞型碳酸盐岩气藏多层合采供气能力实验[J]. 石油勘探与开发,2017,44(5):779−787. WANG Lu,YANG Shenglai,LIU Yicheng,et al. Experiments on gas supply capability of commingled production in a fracture –cavity carbonate gas reservoir[J]. Petroleum Exploration and Development,2017,44(5):779−787. [60] LIU Guangfeng,MENG Zhan,LUO Dayong,et al. Experimental evaluation of interlayer interference during commingled production in a tight sandstone gas reservoir with multi–pressure systems[J]. Fuel,2020,262:116557.. doi: 10.1016/j.fuel.2019.116557 [61] 朱华银,胡勇,李江涛,等. 柴达木盆地涩北多层气藏合采物理模拟[J]. 石油学报,2013,34(增刊1):136−142. ZHU Huayin,HU Yong,LI Jiangtao,et al. Physical simulation of commingled production for multilayer gas reservoir in Sebei gas field,Qaidam Basin[J]. Acta Petrolei Sinica,2013,34(Sup.1):136−142. [62] 王文举,潘少杰,李寿军,等. 致密气藏高低压多层合采物理模拟研究[J]. 非常规油气,2016,3(2):59−64. WANG Wenju,PAN Shaojie,LI Shoujun,et al. Physical simulation of high–pressure and low–pressure multilayer production of tight gas reservoir[J]. Unconventional Oil & Gas,2016,3(2):59−64.. doi: 10.3969/j.issn.2095-8471.2016.02.010 [63] 徐庆岩,于靖之,王雪芹,等. 特低渗透油藏多层合采物理模拟研究[J]. 科技通报,2015,31(9):49−53. XU Qingyan,YU Jingzhi,WANG Xueqin,et al. Physical simulation study of commingle production for ultra–low permeability multilayer reservoir[J]. Bulletin of Science and Technology,2015,31(9):49−53.. doi: 10.3969/j.issn.1001-7119.2015.09.011 [64] 胡勇,李熙喆,万玉金,等. 高低压双气层合采产气特征[J]. 天然气工业,2009,29(2):89−91. HU Yong,LI Xizhe,WAN Yujin,et al. Gas producing property of commingled production for high –low pressure double gas reservoir[J]. Natural Gas Industry,2009,29(2):89−91.. doi: 10.3787/j.issn.1000-0976.2009.02.025 [65] 郭平,刘安琪,朱国金,等. 多层合采凝析气藏小层产量分配规律[J]. 石油钻采工艺,2011,33(2):120−123. GUO Ping,LIU Anqi,ZHU Guojin,et al. Study on production distribution laws of single layers in commingling condensate pool[J]. Oil Drilling & Production Technology,2011,33(2):120−123.. doi: 10.3969/j.issn.1000-7393.2011.02.031 [66] 徐轩,朱华银,徐婷,等. 多层合采气藏分层储量动用特征及判定方法[J]. 特种油气藏,2015,22(1):111−114. XU Xuan,ZHU Huayin,XU Ting,et al. Separated reserve producing characteristic and determination in multi –layer commingled producing gas reservoir[J]. Special Oil and Gas Reservoirs,2015,22(1):111−114.. doi: 10.3969/j.issn.1006-6535.2015.01.025 [67] 许江,张超林,彭守建,等. 多层叠置煤层气系统合采方式及其优化[J]. 煤炭学报,2018,43(6):1677−1686. XU Jiang,ZHANG Chaolin,PENG Shoujian,et al. Multiple layers superposed CBM system commingled drainage schedule and its optimization[J]. Journal of China Coal Society,2018,43(6):1677−1686. [68] WANG Ziwei,QIN Yong. Physical experiments of CBM coproduction:A case study in Laochang district,Yunnan Province,China[J]. Fuel,2019,239:964−981.. doi: 10.1016/j.fuel.2018.11.082 [69] GUO Chen,QIN Yong,SUN Xueyang,et al. Physical simulation and compatibility evaluation of multi–seam CBM co–production:Implications for the development of stacked CBM systems[J]. Journal of Petroleum Science and Engineering,2021,204:108702.. doi: 10.1016/j.petrol.2021.108702 [70] 许江,李奇贤,彭守建,等. 不同层间压差条件下叠置含气系统的定产合采试验研究[J]. 煤炭科学技术,2020,48(1):46−53. XU Jiang,LI Qixian,PENG Shoujian,et al. Experimental study on commingled production with constant–rate of a multi–superimposed gas system under different interlayer pressure difference[J]. Coal Science and Technology,2020,48(1):46−53. [71] 彭守建,贾立,许江,等. 叠置煤层气系统合采渗透率动态演化特征及其影响因素[J]. 煤炭学报,2020,45(10):3501−3511. PENG Shoujian,JIA Li,XU Jiang,et al. Dynamic evolution and its influencing factors of coal seam permeability during joint gas production of superimposed CBM system[J]. Journal of China Coal Society,2020,45(10):3501−3511. [72] 石迎爽,梁冰,薛璐,等. 多层煤层气藏合采特征及物理模拟实验方法研究[J]. 实验力学,2019,34(6):1010−1018. SHI Yingshuang,LIANG Bing,XUE Lu,et al. Study on the characteristics of multi–layer CBM reservoir mining and the experimental method of its physical simulation[J]. Journal of Experimental Mechanics,2019,34(6):1010−1018.. doi: 10.7520/1001-4888-18-135 [73] 梁冰,石迎爽,孙维吉,等. 层间距对双层煤层气藏合采解吸影响实验[J]. 中国矿业大学学报,2020,49(1):54−61. LIANG Bing,SHI Yingshuang,SUN Weiji,et al. Experiment on influence of inter layer spacing on combined desorption of double –layer coalbed methane reservoir[J]. Journal of China University of Mining & Technology,2020,49(1):54−61. [74] MENG Shangzhi,LI Yong,WANG Lei,et al. A mathematical model for gas and water production from overlapping fractured coalbed methane and tight gas reservoirs[J]. Journal of Petroleum Science and Engineering,2018,171:959−973.. doi: 10.1016/j.petrol.2018.08.036 [75] 李勇,孟尚志,吴鹏,等. 煤系气合采产出数值模拟研究[J]. 煤炭学报,2018,43(6):1728−1737. LI Yong,MENG Shangzhi,WU Peng,et al. Numerical simulation of coal measure gases co–production[J]. Journal of China Coal Society,2018,43(6):1728−1737. [76] 李勇,王延斌,孟尚志,等. 煤系非常规天然气合采地质基础理论进展及展望[J]. 煤炭学报,2020,45(4):1406−1418. LI Yong,WANG Yanbin,MENG Shangzhi,et al. Theoretical basis and prospect of coal measure unconventional natural gas co–production[J]. Journal of China Coal Society,2020,45(4):1406−1418. [77] 冯其红,张先敏,张纪远,等. 煤层气与相邻砂岩气藏合采数值模拟研究[J]. 煤炭学报,2014,39(增刊1):169−173. FENG Qihong,ZHANG Xianmin,ZHANG Jiyuan,et al. Numerical simulation of commingling production for coalbed methane and adjoining sandstone gas reservoirs[J]. Journal of China Coal Society,2014,39(Sup.1):169−173. [78] 李立功,康天合,张晓雨,等. 煤–砂岩复合储层煤系气渗流模型及数值模拟研究[J]. 矿业研究与开发,2019,39(4):43−47. LI Ligong,KANG Tianhe,ZHANG Xiaoyu,et al. Percolation model and numerical simulation of coal –based gas in coal –sandstone composite reservior[J]. Mining Research and Development,2019,39(4):43−47. [79] GUO Chen,QIN Yong,WU Caifang,et al. Hydrogeological control and productivity modes of coalbed methane commingled production in multi –seam areas:A case study of the Bide–Santang Basin,western Guizhou,South China[J]. Journal of Petroleum Science and Engineering,2020,189:107039.. doi: 10.1016/j.petrol.2020.107039 [80] ZHAO Yanlong,WANG Zhiming. Effect of interlayer heterogeneity on multi–seam coalbed methane production:A numerical study using a gray lattice Boltzmann model[J]. Journal of Petroleum Science and Engineering,2019,174:940−947.. doi: 10.1016/j.petrol.2018.12.006 [81] 张先敏,吴浩宇,冯其红,等. 多层合采煤层气井动态响应特征[J]. 中国石油大学学报(自然科学版),2020,44(6):88−96. ZHANG Xianmin,WU Haoyu,FENG Qihong,et al. Dynamic characteristics of commingled coalbed methane production in wells with multi –layer coal seams[J]. Journal of China University of Petroleum(Edition of Natural Science),2020,44(6):88−96. [82] WANG Chaowen,JIA Chunsheng,PENG Xiaolong,et al. Effects of wellbore interference on concurrent gas production from multi–layered tight sands:A case study in eastern Ordos Basin,China[J]. Journal of Petroleum Science and Engineering,2019,179:707−715.. doi: 10.1016/j.petrol.2019.04.110 [83] 申建,张春杰,秦勇,等. 鄂尔多斯盆地临兴地区煤系砂岩气与煤层气共采影响因素和参数门限[J]. 天然气地球科学,2017,28(3):479−487. SHEN Jian,ZHANG Chunjie,QIN Yong,et al. Effect factors on co –mining of sandstone gas and coalbed methane in coal series and threshold of parameters in Linxing Block,Ordos Basin[J]. Natural Gas Geoscience,2017,28(3):479−487. [84] RIPEPI N,LOUK K,AMANTE J,et al. Determining coalbed methane production and composition from individual stacked coal seams in a multi –zone completed gas well[J]. Energies,2017,10(10):1533.. doi: 10.3390/en10101533 [85] 汤达祯,赵俊龙,许浩,等. 中–高煤阶煤层气系统物质能量动态平衡机制[J]. 煤炭学报,2015,40(1):40−48. TANG Dazhen,ZHAO Junlong,XU Hao,et al. Material and energy dynamic balance mechanism in middle –high rank coalbed methane(CBM) systems[J]. Journal of China Coal Society,2015,40(1):40−48. [86] YANG Zhaobiao,LI Yangyang,QIN Yong,et al. Development unit division and favorable area evaluation for joint mining coalbed methane[J]. Petroleum Exploration Development,2019,46(3):583−593.. doi: 10.1016/S1876-3804(19)60038-8 [87] 陈立超,王生维. 煤岩弹性力学性质与煤层破裂压力关系[J]. 天然气地球科学,2019,30(4):503−511. CHEN Lichao,WANG Shengwei. Relationship between elastic mechanical properties and equivalent fracture pressure of coal reservoir near wellbore[J]. Natural Gas Geoscience,2019,30(4):503−511.. doi: 10.11764/j.issn.1672-1926.2018.12.004 [88] 孟召平,雷钧焕,王宇恒. 基于Griffith强度理论的煤储层水力压裂有利区评价[J]. 煤炭学报,2020,45(1):268−275. MENG Zhaoping,LEI Junhuan,WANG Yuheng. Evaluation of favorable areas for hydraulic fracturing of coal reservoir based on Griffith strength theory[J]. Journal of China Coal Society,2020,45(1):268−275. [89] 桑树勋. 煤系气高效勘探开发的岩石力学地层理论方法体系研究[R]. 国家自然科学基金委员会, 重点项目, 42030810, 2021.01–2025.12. [90] SU Xianbo,LI Feng,SU Linan,et al. The experimental study on integrated hydraulic fracturing of coal measures gas reservoirs[J]. Fuel,2020,270:117527.. doi: 10.1016/j.fuel.2020.117527 [91] 秦勇,张政,白建平,等. 沁水盆地南部煤层气井产出水源解析及合层排采可行性判识[J]. 煤炭学报,2014,39(9):1892−1898. QIN Yong,ZHANG Zheng,BAI Jianping,et al. Source apportionment of produced –water and feasibility discrimination of commingling CBM production from wells in southern Qinshui Basin[J]. Journal of China Coal Society,2014,39(9):1892−1898. [92] CHEUNG K,SANEI H,KLASSEN P,et al. Produced fluids and shallow groundwater in coalbed methane(CBM) producing regions of Alberta,Canada:Trace element and rare earth element geochemistry[J]. International Journal of Coal Geology,2009,77(3-4):338−349.. doi: 10.1016/j.coal.2008.07.012 [93] UNAL B,PERRY V R,SHETH M,et al. Trace elements affect methanogenic activity and diversity in enrichments from subsurface coal bed produced water[J]. Frontiers in Microbiology,2012,5:175. [94] RICE C A,FLORES R M,STRICKER G D,et al. Chemical and stable isotopic evidence for water/rock interaction and biogenic origin of coalbed methane,Fort Union Formation,Powder River Basin,Wyoming and Montana U. S. A.[J]. International Journal of Coal Geology,2008,76(1/2):76−85.. doi: 10.1016/j.coal.2008.05.002 [95] 王善博,唐书恒,万毅,等. 山西沁水盆地南部太原组煤储层产出水氢氧同位素特征[J]. 煤炭学报,2013,38(3):448−454. WANG Shanbo,TANG Shuheng,WAN Yi,et al. The hydrogen and oxygen isotope characteristics of drainage water from Taiyuan coal reservoir[J]. Journal of China Coal Society,2013,38(3):448−454. [96] ZHANG Songhang,TANG Shuheng,LI Zhongcheng,et al. Stable isotope characteristics of CBM co –produced water and implications for CBM development:The example of the Shizhuangnan Block in the southern Qinshui Basin,China[J]. Journal of Natural Gas Science and Engineering,2015,27(3):1400−1411. [97] WANG Bo,SUN Fenjin,TANG Dazhen,et al. Hydrological control rule on coalbed methane enrichment and high yield in FZ Block of Qinshui Basin[J]. Fuel,2015,140:568−577.. doi: 10.1016/j.fuel.2014.09.111 [98] 李忠诚,唐书恒,王晓锋,等. 沁水盆地煤层气井产出水化学特征与产能关系研究[J]. 中国矿业大学学报,2011,40(3):424−429. LI Zhongcheng,TANG Shuheng,WANG Xiaofeng,et al. Relationship between water chemical composition and production of coalbed methane wells,Qinshui Basin[J]. Journal of China University of Mining & Technology,2011,40(3):424−429. [99] VAN VOAST W A,MONTANA V. Geochemical signature of formation waters associated with coalbed methane[J]. AAPG Bulletin,2003,87(4):667−676.. doi: 10.1306/10300201079 [100] BRINCK E L,DREVER J I,FROST C D. The geochemical evolution of water coproduced with coalbed natural gas in the Powder River Basin,Wyoming[J]. Environmental Geosciences,2008,15(4):153−171.. doi: 10.1306/eg.01290807017 [101] TAULIS M,MILKE M. Chemical variability of groundwater samples collected from a coal seam gas exploration well,Maramarua,New Zealand[J]. Water Research,2013,47(3):1021−1034.. doi: 10.1016/j.watres.2012.11.003 [102] 郭晨,秦勇,韩冬. 黔西比德–三塘盆地煤层气井产出水离子动态及其对产能的指示[J]. 煤炭学报,2017,42(3):680−686. GUO Chen,QIN Yong,HAN Dong. Ions dynamics of produced water and indication for CBM production from wells in Bide –Santang Basin,Western Guizhou[J]. Journal of China Coal Society,2017,42(3):680−686. [103] YANG Zhaobiao,QIN Yong,QIN Zonghao,et al. Characteristics of dissolved inorganic carbon in produced water from coalbed methane wells and its geological significance[J]. Petroleum Exploration and Development,2020,47(5):1074−1083.. doi: 10.1016/S1876-3804(20)60118-5 [104] YANG Mei,JU Yiwen,LIU Guijian,et al. Geochemical characters of water coproduced with coalbed gas and shallow groundwater in Liulin coalfield of China[J]. Acta Geologica Sinica(English Edition),2013,87(6):1690−1700.. doi: 10.1111/1755-6724.12169 [105] DAHM K G,GUERRA K L,MUNAKATA –MARR J,et al. Trends in water quality variability for coalbed methane produced water[J]. Journal of Cleaner Production,2014,84:840−848.. doi: 10.1016/j.jclepro.2014.04.033 [106] ENGLE M A,ROWAN E L. Geochemical evolution of produced waters from hydraulic fracturing of the Marcellus shale,northern Appalachian Basin:A multivariate compositional data analysis approach[J]. International Journal of Coal Geology,2014,126:45−56.. doi: 10.1016/j.coal.2013.11.010 [107] BAKAR H A,ZARROUK S J. Geochemical multiaquifer assessment of the Huntly coalfield,New Zealand,using a novel chloride –bicarbonate –boron ternary diagram[J]. International Journal of Coal Geology,2016,167:136−147.. doi: 10.1016/j.coal.2016.09.017 [108] 许耀波. 基于解吸气成分体积分数差异的煤层气合采产层判识方法[J]. 煤炭学报,2020,45(增刊1):367−376. XU Yaobo. A method for identification of CBM co–production reservoir based on the volume fraction difference of desorption gas components[J]. Journal of China Coal Society,2020,45(Sup.1):367−376. [109] ZHANG Songhang,TANG Shuheng,LI Zhongcheng,et al. Study of hydrochemical characteristics of CBM co –produced water of the Shizhuangnan Block in the southern Qinshui Basin,China,on its implication of CBM development[J]. International Journal of Coal Geology,2016,159:169−182.. doi: 10.1016/j.coal.2016.04.003 [110] GUO Chen,QIN Yong,XIA Yucheng,et al. Geochemical characteristics of water produced from CBM wells and implications for commingling CBM production:A case study of the Bide–Santang Basin,western Guizhou,China[J]. Journal of Petroleum Science and Engineering,2017,159:666−678.. doi: 10.1016/j.petrol.2017.09.068 [111] HUANG Huazhou,SANG Shuxun,MIAO Yao,et al. Trends of ionic concentration variations in water coproduced with coalbed methane in the Tiefa Basin[J]. International Journal of Coal Geology,2017,182:32−41.. doi: 10.1016/j.coal.2017.08.010 [112] ZHANG Zheng,QIN Yong,BAI Jianping,et al. Hydrogeochemistry characteristics of produced waters from CBM wells in southern Qinshui Basin and implications for CBM commingled development[J]. Journal of Natural Gas Science and Engineering,2018,56:428−443.. doi: 10.1016/j.jngse.2018.06.024 [113] ZHANG Yan,LI Song,TANG Dazhen,et al. Structure–and hydrology –controlled isotopic coupling and heterogeneity of coalbed gases and co –produced water in the Yanchuannan Block,southeastern Ordos Basin[J]. International Journal of Coal Geology,2020,232:103626.. doi: 10.1016/j.coal.2020.103626 [114] 李彬刚. 煤层气井合层排采过程中储层伤害问题研究[J]. 中国煤炭地质,2017,29(7):33−35. LI Bingang. Study on reservoir harm issue during CBM well multilayer drainage process[J]. Coal Geology of China,2017,29(7):33−35.. doi: 10.3969/j.issn.1674-1803.2017.07.08 [115] 周效志,桑树勋,易同生,等. 煤层气合层开发上部产层暴露的伤害机理[J]. 天然气工业,2016,36(6):52−59. ZHOU Xiaozhi,SANG Shuxun,YI Tongsheng,et al. Damage mechanism of upper exposed producing layers during CBM multi –coal seam development[J]. Natural Gas Industry,2016,36(6):52−59.. doi: 10.3787/j.issn.1000-0976.2016.06.008 [116] 傅雪海,葛燕燕,梁文庆,等. 多层叠置含煤层气系统递进排采的压力控制及流体效应[J]. 天然气工业,2013,33(11):35−39. FU Xuehai,GE Yanyan,LIANG Wenqing,et al. Pressure control and fluid effect of progressive drainage of multiple superposed CBM systems[J]. Natural Gas Industry,2013,33(11):35−39.. doi: 10.3787/j.issn.1000-0976.2013.11.006 [117] 郭晨,秦勇,易同生,等. 黔西肥田区块地下水动力条件与煤层气有序开发[J]. 煤炭学报,2014,39(1):115−123. GUO Chen,QIN Yong,YI Tongsheng,et al. Groundwater dynamic conditions and orderly coalbed methane development of Feitian Block in western Guizhou,South China[J]. Journal of China Coal Society,2014,39(1):115−123. [118] 李鑫,傅雪海,李刚. 黔西多煤层气井递进排采与分隔排采工艺探讨[J]. 煤炭科学技术,2016,44(2):22−26. LI Xin,FU Xuehai,LI Gang. Discussion of progressive drainage and separated reservoirs drainage of multiple CBM well in West Guizhou[J]. Coal Science and Technology,2016,44(2):22−26. [119] 胡海洋,赵凌云,陈捷. 松河井田多煤层资源开发条件及合采储层伤害特征[J]. 矿业安全与环保,2020,47(2):99−103. HU Haiyang,ZHAO Lingyun,CHEN Jie. Development conditions of multiple coal seam resources and damage characteristics of co−mining reservoirs in Songhe mine field[J]. Mining Safety & Environmental Protection,2020,47(2):99−103. [120] 郑力会,陶秀娟,魏攀峰,等. 多储层产量伤害物理模拟系统及其在煤系气合采中的应用[J]. 煤炭学报,2021,46(8):2501−2509. ZHENG Lihui,TAO Xiujuan,WEI Panfeng,et al. Multi–reservoir production damage physical simulation system and its application in coal –measure gas production[J]. Journal of China Coal Society,2021,46(8):2501−2509. -