Key technologies and engineering practice of 3D laser scanning in coal mine roadways
-
摘要: 智能化、无人化开采是煤炭行业发展的必然趋势,精准地质信息探测是当前智慧煤矿建设中的重点研发方向之一,其中巷道信息的精准探测和巷道三维模型的快速获取是地质透明化的重要数据来源。对比分析传统巷道建模方法及其优缺点,提出利用三维激光扫描重建技术构建高精度透明工作面巷道模型的技术思路。在分析煤矿井下工况环境长距离三维激光扫描面临的技术难题的基础上,研究三维激光扫描原理和空间点坐标计算方法,并提出透明工作面巷道三维激光扫描重建技术流程,其关键技术包括:三维激光扫描系统动态标定和坐标转换方法;点云预处理技术中基于统计滤波法的大尺度噪声滤波方法和基于移动最小二乘的小尺度噪声滤波算法;点云关键点提取与特征描述技术中SIFT特征检测算法和FPFH特征描述算法;点云配准技术中基于FPFH特征描述算法的粗配准技术和基于迭代最近点算法的精配准技术。以准格尔煤田唐家会煤矿某工作面为研究对象,利用自主研发的移动式三维激光扫描系统从三维激光扫描施工流程、巷道点云数据采集、边界轮廓线提取、巷道与工作面联合建模等方面进行实践应用。结果表明,提出的基于三维激光扫描技术的工作面巷道三维重建思路在技术上是可行的,能为复杂巷道的快速三维扫描、重建提供一条可行的技术路径。Abstract: Intelligent and unmanned mining is an inevitable trend in the development of the coal industry. Precise geological information detection is one of the current key research and development directions in the construction of smart coal mines. The precise detection of information on roadways and the rapid acquisition of three-dimensional roadway models are important data sources for geological transparence. Through a comparative analysis of traditional roadway modeling methods and their advantages and disadvantages, a technical idea of using three-dimensional laser scanning reconstruction technology to construct a high-precision transparent working face roadway model is proposed. On the basis of the analysis of the technical problems faced by long-distance 3D laser scanning in underground coal mine working conditions, the principle of 3D laser scanning and the calculation method of spatial point coordinates are studied, and the realization process of the 3D laser scanning reconstruction technology of the roadway in transparent working faces is proposed. The key technologies of the 3D laser scanning reconstruction technology including the dynamic calibration of the 3D laser scanning system and the coordinate conversion method, the large-scale noise filtering method based on the statistical filtering method in the point cloud preprocessing technology and the small-scale noise filtering algorithm based on moving least squares, the SIFT feature detection algorithm and FPFH feature description algorithm in the point cloud key point extraction and feature description technology as well as the coarse registration technology based on the FPFH feature description algorithm in the point cloud registration technology and precise registration technology based on the iterative nearest point algorithm. Finally, the self-developed mobile 3D laser scanning system is used for practical application in three-dimensional laser scanning construction process, roadway point cloud data collection, boundary contour extraction, and joint modeling of roadways and working faces in working faces of Tangjiahui Coal Mine in Jungar Coalfield. The results show that the idea of 3D reconstruction of roadways in working faces based on 3D laser scanning technology proposed in the paper is technically feasible, providing a feasible technical path for fast 3D scanning and reconstruction of complex roadways.
-
Key words:
- roadway /
- 3D laser scanning /
- point cloud data /
- 3D reconstruction
-
表 1 移动式三维激光扫描系统主要技术参数
Table 1 Main technical parameters of mobile 3D laser scanning
测量距离/m 精度/m 视场角/(°) 分辨率/(°) 30 0.03 360×360 0.6 表 2 纵向切割精度
Table 2 Longitudinal cutting accuracy
巷道高度测量值/m 切片后测量值/m 偏差/m 3.40 3.408 0.008 3.42 3.427 0.007 3.41 3.426 0.016 3.32 3.293 −0.027 3.45 3.436 −0.090 表 3 整体偏差
Table 3 Overall deviation
巷道距离/m 重叠度/% 偏差/m 0~5 413 98.253 0.251 5 463 97.892 0.315 5 513 97.217 0.442 5 563 96.684 0.534 5 625 95.587 0.675 -
[1] 王国法,刘峰,孟祥军,等. 煤矿智能化(初级阶段)研究与实践[J]. 煤炭科学技术,2019,47(8):1−36.WANG Guofa,LIU Feng,MENG Xiangjun,et al. Research and practice on intelligent coal mine construction(primary stage)[J]. Coal Science and Technology,2019,47(8):1−36. [2] 王国法,杜毅博. 智慧煤矿与智能化开采技术的发展方向[J]. 煤炭科学技术,2019,47(1):1−10.WANG Guofa,DU Yibo. Development direction of intelligent coal mine and intelligent mining technology[J]. Coal Science and Technology,2019,47(1):1−10. [3] 张进修.地下实测巷道模型三维重构及关键算法研究[D].湘潭: 湘潭大学, 2019.ZHANG Jinxiu.Research on 3D modeling and key algorithms for underground measured laneway[D].Xiangtan: Xiangtan University, 2019. [4] 江记洲,郭甲腾,吴立新,等. 基于三维激光扫描点云的矿山巷道三维建模方法研究[J]. 煤矿开采,2016,21(2):109−113.JIANG Jizhou,GUO Jiateng,WU Lixin,et al. 3-D modeling method of mine roadway based on 3-D laser scanning point cloud[J]. Coal Mining Technology,2016,21(2):109−113. [5] 石信肖,王健,王磊,等. 点云数据下的矿山巷道三维建模[J]. 遥感信息,2019,34(6):99−104.. doi: 10.3969/j.issn.1000-3177.2019.06.016SHI Xinxiao,WANG Jian,WANG Lei,et al. Three-dimensional modelling of mine laneways under point cloud data[J]. Remote Sensing Information,2019,34(6):99−104.. doi: 10.3969/j.issn.1000-3177.2019.06.016 [6] 金卓,王占利,张自宾. 基于三维激光扫描的矿井开拓巷道围岩变形测量技术研究[J]. 应用激光,2020,40(6):1120−1125.JIN Zhuo,WANG Zhanli,ZHANG Zibin. Research on measurement technology of surrounding rock deformation of mine development roadway based on 3D Laser Scanning[J]. Applied Laser,2020,40(6):1120−1125. [7] 张君,胡哲骏,刘晓杨. 三维激光扫描设备在矿山井巷工程快速测绘中的应用[J]. 采矿技术,2020,20(6):229−232.. doi: 10.3969/j.issn.1671-2900.2020.06.063ZHANG Jun,HU Zhejun,LIU Xiaoyang. Application of 3D laser scanning equipment in rapid surveying and mapping of mine roadway engineering[J]. Mining Technology,2020,20(6):229−232.. doi: 10.3969/j.issn.1671-2900.2020.06.063 [8] 郭良林,周大伟,张德民,等. 基于激光点云的巷道变形监测及支护研究[J]. 煤矿安全,2020,51(8):178−183.GUO Lianglin,ZHOU Dawei,ZHANG Demin,et al. Research on deformation monitoring and supporting of tunnel based on laser point cloud[J]. Safety in Coal Mines,2020,51(8):178−183. [9] 刘晓阳,胡乔森,李慧娟. 基于三维激光扫描技术的巷道顶板监测研究[J]. 中国煤炭,2017,43(7):81−83.. doi: 10.3969/j.issn.1006-530X.2017.07.021LIU Xiaoyang,HU Qiaosen,LI Huijuan. Research on coal mine roof monitoring based on three-dimensional laser scanning technology[J]. China Coal,2017,43(7):81−83.. doi: 10.3969/j.issn.1006-530X.2017.07.021 [10] 赵小平,刘强. 基于点云数据的三维巷道快速建模研究[J]. 有色金属(矿山部分),2016,68(6):90−93.ZHAO Xiaoping,LIU Qiang. 3D rapid modeling for tunnel based on point cloud data[J]. Nonferrous Metals(Mining Section),2016,68(6):90−93. [11] 吴哲明,孙振国,张文增,等. 基于惯性测量单元旋转的陀螺漂移估计和补偿方法[J]. 清华大学学报(自然科学版),2014,54(9):1143−1147.WU Zheming,SUN Zhenguo,ZHANG Wenzeng,et al. Gyroscope bias estimation and compensation by rotation of the inertial measurement unit[J]. Journal of Tsinghua University(Science & Technology),2014,54(9):1143−1147. [12] 姚连璧,汪志飞,孙海丽. 车载激光扫描仪外参数标定方法设计与实现[J]. 同济大学学报(自然科学版),2016,44(1):161−166.YAO Lianbi,WANG Zhifei,SUN Haili. Design and implementation of vehicle laser scanner’s external parameter calibration[J]. Journal of Tongji University(Natural Science),2016,44(1):161−166. [13] 杨凡,李广云,王力. 三维坐标转换方法研究[J]. 测绘通报,2010(6):5−7.YANG Fan,LI Guangyun,WANG Li. Research on the methods of calculating 3D coordinate transform parameters[J]. Bulletin of Surveying and Mapping,2010(6):5−7. [14] 韩东升,徐茂林,金远航. 多源异构点云配准数据的滤波及精度分析[J]. 测绘科学技术学报,2020,37(5):503−508.HAN Dongsheng,XU Maolin,JIN Yuanhang. Filtering and accurace analysis of multi-source heterogeneous point cloud registration data[J]. Journal of Geomatics Science and Technology,2020,37(5):503−508. [15] 康传利,时满星,陈洋,等. 一种考虑多尺度噪声的平滑去噪方法[J]. 科学技术与工程,2018,18(11):110−116.. doi: 10.3969/j.issn.1671-1815.2018.11.017KANG Chuanli,SHI Manxing,CHEN Yang. A smoothing de-noising method considering multi-scale noise[J]. Science Technology and Engineering,2018,18(11):110−116.. doi: 10.3969/j.issn.1671-1815.2018.11.017 [16] LOWE D G. Distinctive image features from scale-invariant key points[J]. International Journal of Computer Vision,2004,60(2):91−110.. doi: 10.1023/B:VISI.0000029664.99615.94 [17] RUSU R B, BLODOW N, MARTON Z C, et al.Aligning point cloud views using persistent feature histograms[C]//2008 IEEE//RSJ International Conference on Intelligent Robots and Systems, September 22-26, 2008, Nice, France.New York: IEEE Press, 2008: 3384−3391. [18] RUSU R B, BLODOW N, BEETZ M.Fast point feature histograms(FPFH) for 3D registration[C]//2009 IEEE International Conference on Robots and Automation, May 12-17, 2009, Kobe, Japan: IEEE Press, 2009: 3212−3217. [19] 荆路,武斌,方锡禄. 基于SIFT特征点结合ICP的点云配准方法[J]. 激光与红外,2021,51(7):944−950.. doi: 10.3969/j.issn.1001-5078.2021.07.019JING Lu,WU Bin,FANG Xilu. Point cloud registration method based on the SIFT feature points combined with ICP algorithm[J]. Laser & Infrared,2021,51(7):944−950.. doi: 10.3969/j.issn.1001-5078.2021.07.019 [20] BESL P J ,MCKAY N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(2):239−256.. doi: 10.1109/34.121791 -