Influential factors of the electromagnetic wave instrument while drilling in coal seam horizontal wells and resistivity simulation calculation
-
摘要: 为掌握煤层水平井中随钻电磁波仪器探测影响因素,通过有限元数值模拟研究顶底板围岩电阻率、仪器偏心、煤层井眼垮塌和煤层厚度等因素对电阻率测量值的影响,分析高阻煤岩地层条件下幅度比和相位差计算的电阻率响应规律。在此基础上,建立三层地质数学模型,模拟不同发射频率情况下随钻电磁波仪器钻进煤层时,幅度比和相位差电阻率计算解析解和数值解的差异,以及煤层相对介电常数对幅度比和相位差计算的影响。模拟结果表明:幅度比和相位差计算的电阻率解析解和数值解符合度很高,但当电阻率大于100 Ω·m时,幅度比电阻率已经不能反映煤层的真实电阻率,所以在实际处理解释过程中用相位差电阻率要好些;高阻煤层不同发射频率情况下,电阻率数据主要对煤层电阻率敏感,对介电常数不敏感,只有在超高频时,介电常数才会对电磁波传播造成较大影响。Abstract: In order to figure out the influential factors of the detection by the electromagnetic wave instrument while drilling in coal seam horizontal wells, we studied the impacts of roof and floor surrounding rock resistivity, instrument eccentricity, coal seam borehole collapse and coal seam thickness on the measurement of resistivity through finite element numerical simulation. The resistivity response law of the amplitude ratio and phase difference calculation under the condition of high-resistivity coal rock formation was analyzed. On this basis, a three-layer geological mathematical model was established to simulate the difference between analytical and numerical solutions of the amplitude ratio and phase difference resistivity when the electromagnetic wave instrument while drilling was drilling in the coal seam at different emission frequencies, as well as the influence of formation relative dielectric constant on the amplitude ratio and phase difference calculation. The simulation results show that the analytical and numerical solutions of resistivity calculated by the amplitude ratio and phase difference are in good agreement, but when the resistivity is greater than 100 Ω·m, the amplitude ratio resistivity could not reflect the real resistivity of the coal seam, so it is better to use phase difference resistivity in the actual processing and interpretation. At different emission frequencies of high-resistivity coal seams, the resistivity data are mainly sensitive to the formation resistivity and insensitive to the dielectric constant. Only at ultra-high frequencies, the dielectric constant will have a great impact on the propagation of the electromagnetic wave.
-
表 1 岩石电阻率
Table 1 Rock resistivity
名称 电阻率/(Ω·m) 名称 电阻率/(Ω·m) 泥灰岩 5~5×$ {10}^{2} $ 黏土 (1~2)×$ {10}^{2} $ 石灰岩 50~5 000 页岩 10~100 白云岩 50~5 000 泥质页岩 5~1 000 硬石膏 10~$ {10}^{6} $ 疏松页岩 2~50 无烟煤 1~1 000 致密页岩 20~1 000 烟煤 10~$ {10}^{6} $ 含油气砂岩 2~1 000 -
[1] 葛世荣. 智能化采煤装备的关键技术[J]. 煤炭科学技术,2014,42(9):7−11.GE Shirong. Key technology of intelligent coal mining equipment[J]. Coal Science and Technology,2014,42(9):7−11. [2] 陈刚,范宜仁,李泉新. 顺煤层钻进随钻方位电磁波顶底板探测影响因素[J]. 煤田地质与勘探,2019,47(6):201−206.CHEN Gang,FAN Yiren,LI Quanxin. Influencing factors of azimuth electromagnetic wave roof and floor detection while drilling along coal seam[J]. Coal Geology & Exploration,2019,47(6):201−206. [3] CHEN Gang,FAN Yiren,LI Quanxin. A study of coalbed methane(CBM) reservoir boundary detections based on azimuth electromagnetic waves[J]. Journal of Petroleum Science and Engineering,2019,179:432−443.. doi: 10.1016/j.petrol.2019.04.063 [4] CHEN Gang,FAN Yiren,LI Quanxin. Using an azimuth electromagnetic wave imaging method to detect and characterize coal−seam interfaces and low−resistivity anomalies[J]. Journal of Environmental & Engineering Geophysics,2020,25(1):75−87. [5] 王磊,范宜仁,黄瑞,等. 各向异性介质多分量感应测井三维Born几何因子理论研究[J]. 物理学报,2015,64(23):239301.. doi: 10.7498/aps.64.239301WANG Lei,FAN Yiren,HUANG Rui,et al. Three dimensional born geometrical factor of multi−component induction logging in anisotropic media[J]. Acta Physica Sinica,2015,64(23):239301.. doi: 10.7498/aps.64.239301 [6] FREDERICKS P D,HEARN F P,WISLER M M. Formation evaluation while drilling with a dual propagation resistivity tool[J]. SPE Annual Technical Conference and Exhibition,1989:19622. [7] 刘乃震,王忠,刘策. 随钻电磁波传播方位电阻率仪地质导向关键技术[J]. 地球物理学报,2015,58(5):1767−1775.. doi: 10.6038/cjg20150526LIU Naizhen,WANG Zhong,LIU Ce. Theories and key techniques of directional electromagnetic propagation resistivity tool for geosteering applications while drilling[J]. Chinese Journal of Geophysics,2015,58(5):1767−1775.. doi: 10.6038/cjg20150526 [8] 陈华,范宜仁,洪德成. 随钻电磁波测井中的数学模型[J]. 数学建模及其应用,2017,6(3):26−34.. doi: 10.3969/j.issn.2095-3070.2017.03.003CHEN Hua,FAN Yiren,HONG Decheng. Mathematical model in electromagnetic logging while drilling[J]. Mathematical Modeling and Applications,2017,6(3):26−34.. doi: 10.3969/j.issn.2095-3070.2017.03.003 [9] 李会银,苏义脑,盛利民,等. 多深度随钻电磁波电阻率测量系统设计[J]. 中国石油大学学报(自然科学版),2010,34(3):38−42.LI Huiyin,SU Yinao,SHENG Limin,et al. A logging while drilling tool for multi−depth electromagnetic wave resistivity measurement[J]. Journal of China University of Petroleum(Natural Science Edition),2010,34(3):38−42. [10] 赵媛,顿月芹,袁建生. 随钻电磁波测井仪器线圈系参数设计方法研究[J]. 测井技术,2011,35(3):224−229.. doi: 10.3969/j.issn.1004-1338.2011.03.007ZHAO Yuan,DUN Yueqin,YUAN Jiansheng. Study on coil system design for MWD electromagnetic wave logging tools[J]. Well Logging Technology,2011,35(3):224−229.. doi: 10.3969/j.issn.1004-1338.2011.03.007 [11] 杨震,杨锦舟,杨涛. 随钻方位电磁波仪器补偿测量方法研究[J]. 中国石油大学学报(自然科学版),2015,39(3):62−69.YANG Zhen,YANG Jinzhou,YANG Tao. Research on azimuthal electromagnetic tool while drilling measuring method of compensation[J]. Journal of China University of Petroleum(Natural Science Edition),2015,39(3):62−69. [12] 高杰,辛秀艳,陈文辉,等. 随钻电磁波电阻率测井之电阻率转化方法与研究[J]. 测井技术,2008,32(6):503−507.. doi: 10.3969/j.issn.1004-1338.2008.06.004GAO Jie,XIN Xiuyan,CHEN Wenhui,et al. Resistivity derivation in electromagnetic wave propagation resistivity logging while drilling[J]. Well Logging Technology,2008,32(6):503−507.. doi: 10.3969/j.issn.1004-1338.2008.06.004 [13] 杨锦舟,林楠,张海花,等. 相对介电常数对电磁波电阻率测量值的影响及校正方法[J]. 石油钻探技术,2009,37(1):29−33.. doi: 10.3969/j.issn.1001-0890.2009.01.007YANG Jinzhou,LIN Nan,ZHANG Haihua,et al. The impact of dielectric on MWD array electromagnetic wave resistivity tools and correction method[J]. Petroleum Drilling Techniques,2009,37(1):29−33.. doi: 10.3969/j.issn.1001-0890.2009.01.007 [14] 魏宝君. 一种新型随钻电阻率测井仪器的响应和刻度[J]. 地球物理学报,2007,50(2):632−641.. doi: 10.3321/j.issn:0001-5733.2007.02.039WEI Baojun. Response and calibration of a new logging−while−drilling resistivity tool[J]. Chinese Journal of Geophysics,2007,50(2):632−641.. doi: 10.3321/j.issn:0001-5733.2007.02.039 [15] 范宜仁,胡云云,李虎,等. 随钻电磁波测井仪器偏心条件下响应模拟与分析[J]. 中国石油大学学报(自然科学版),2014,38(2):59−66.FAN Yiren,HU Yunyun,LI Hu,et al. Numerical modeling and analysis of responses of eccentric electromagnetics logging while drilling tool[J]. Journal of China University of Petroleum(Natural Science Edition),2014,38(2):59−66. [16] FAN Yiren,WANG Lei,GE Xinmin,et al. Response simulation and corresponding analysis of dual laterolog in cavernous reservoirs[J]. Petroleum Exploration and Development,2016,43(2):261−267.. doi: 10.1016/S1876-3804(16)30029-5 [17] WANG Lei,FAN Yiren,YUAN Chao,et al. Selection criteria and feasibility of the inversion model for azimuthal electromagnetic logging while drilling(LWD)[J]. Petroleum Exploration and Development,2018,45(5):974−982.. doi: 10.1016/S1876-3804(18)30101-0 [18] WANG Lei,LI Hu,FAN Yiren,et al. Sensitivity analysis and inversion processing of azimuthal resistivity logging–while–drilling measurements[J]. Journal of Geophysics and Engineering,2018,15(6):2339−2349.. doi: 10.1088/1742-2140/aacbf4 [19] BITTAR M S,KLEIN J D,BESTE R,et al. A new azimuthal deep−reading resistivity tool for geosteering and advanced formation evaluation[J]. SPE Reservoir Evaluation & Engineering,2009,12(2):270−279. [20] DENICHOU J M,DUPUIS C. Automatic inversion of deep−directional−resistivity measurements for well placement and reservoir description[J]. The Leading Edge,2015,34(5):504−512.. doi: 10.1190/tle34050504.1 [21] WANG Jing,LIU R C. Application of complex image theory in geosteering[J]. IEEE Transactions on Geoscience & Remote Sensing,2014,52(12):7629−7636. -