留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于钻孔雷达的透明工作面构建方法

蒋必辞 程建远 李萍 刘文明 余俊辉 吴国庆

蒋必辞,程建远,李萍,等.基于钻孔雷达的透明工作面构建方法[J].煤田地质与勘探,2022,50(1):128−135. doi: 10.12363/issn.1001-1986.21.10.0598
引用本文: 蒋必辞,程建远,李萍,等.基于钻孔雷达的透明工作面构建方法[J].煤田地质与勘探,2022,50(1):128−135. doi: 10.12363/issn.1001-1986.21.10.0598
JIANG Bici,CHENG Jianyuan,LI Ping,et al.Construction method of transparent working face based on borehole radar[J].Coal Geology & Exploration,2022,50(1):128−135. doi: 10.12363/issn.1001-1986.21.10.0598
Citation: JIANG Bici,CHENG Jianyuan,LI Ping,et al.Construction method of transparent working face based on borehole radar[J].Coal Geology & Exploration,2022,50(1):128−135. doi: 10.12363/issn.1001-1986.21.10.0598

基于钻孔雷达的透明工作面构建方法

doi: 10.12363/issn.1001-1986.21.10.0598
基金项目: 国家重点研发计划课题(2018YFC0807804);天地科技股份有限公司科技创新创业资金专项项目(2019-TD-ZD003,2020-TD-ZD003)
详细信息
    第一作者:

    蒋必辞,1990年生,女,湖北随州人,博士研究生,助理研究员,从事矿井地球物理数据处理与解释方法研究. E-mail:jiangbici@cctegxian.com

  • 中图分类号: P631

Construction method of transparent working face based on borehole radar

  • 摘要: 煤岩界面的高精度探测是构建智能开采三维地质模型的关键难点。提出利用煤矿井下顺层孔实施单孔反射雷达,联合多孔探测结果构建区域煤岩界面地质模型实现透明工作面的方法。对单孔雷达数据,利用巷道波同相轴斜率计算煤层雷达波速度,采用空间约束偏移成像实现煤层顶/底板反射界面精准归位。形成3种匹配实际开采的透明工作面构建模式:回采前长钻孔模式、回采中短钻孔模式和联合模式。在山西某矿31004工作面对回采中短钻孔模式进行试验性应用,基于钻孔雷达构建的工作面地质模型与原始地质模型相比,局部信息刻画更精细,顶、底界面及煤厚与实际数据误差分别小于0.57、0.54、0.30 m。结果表明:钻孔雷达能高精度探测煤厚与顶、底界面,可实现透明工作面的构建。

     

  • 图  钻孔雷达探测煤岩界面原理

    Fig. 1  Schematic diagram of borehole radar detecting coal rock interface

    图  钻孔雷达探测煤岩界面数据处理与解释流程

    Fig. 2  The workflow of borehole radar data processing and interpretation for detecting coal rock interface

    图  基本模型

    Fig. 3  Schematic diagram of basic model

    图  不同模型的钻孔雷达响应时域剖面对比

    ①—直达波;②—顶板反射波同相轴;③—底板反射同相轴;④—多次波同相轴;⑤—⑧为巷道波同相轴

    Fig. 4  Comparison of borehole radar response time-domain profiles of different models

    图  偏移原理

    Fig. 5  Schematic diagram of migration imaging

    图  煤层与顶/底板界面空间位置约束偏移成像

    Fig. 6  Spatial position constrained migration imaging of coal seam and roof/floor interface

    图  构建透明工作面工作流程

    Fig. 7  Workflow of constructing transparent working face based on borehole radar

    图  钻孔雷达构建透明工作面钻孔布置

    Fig. 8  Borehole design of constructing transparent working face based on borehole radar

    图  钻孔开孔位置切眼剖面位置

    Fig. 9  Borehole design in sectional view

    图  10  钻孔相对位置关系及轨迹平面投影

    Fig. 10  Position relationship and borehole trajectory of boreholes

    图  11  钻孔雷达时域剖面

    Fig. 11  Borehole radar time domain profile

    图  12  钻孔雷达偏移成像

    Fig. 12  Examples of borehole radar migration imaging results

    图  13  煤顶底界面高程分布

    Fig. 13  Floor interface elevation distribution

    图  14  钻孔雷达测量与切眼测量结果对比

    Fig. 14  Comparison of coal seam profile before and after updating

    表  1  激励源、输出参数及吸收边界条件

    Table  1  Excitation source, output parameters and absorption boundary conditions

    中心频率/MHz收发天线间距/m天线类型记录窗长/ns激励类型输出信号吸收边界条件
    2000.5偶极子天线100Ricker子波Ez完全匹配层
    下载: 导出CSV

    表  2  几何模型参数

    Table  2  Geometric model parameter

    模型区域/(m×m×m)煤层大小/
    (m×m×m)
    底板大小/(m×m×m)巷道大小/(m×m×m)顶板大小/(m×m×m)网格大小/m钻孔直径/mm钻孔长度
    10×11×510×5×510×3×51×5×510×5×30.0190随模型改变
    下载: 导出CSV

    表  3  卸压孔开孔信息

    Table  3  Pressure relief holes information

    钻孔号坐标/m高程/m距顶距离/m距底距离/m煤厚/m
    xy煤顶钻孔
    1 4193737.741 38418798.174 502.142 500.642 1.5 1.35 2.85
    2 4193762.869 38418798.445 506.350 504.950 1.4 1.73 3.13
    3 4193793.732 38418796.602 510.416 508.416 2.0 1.03 3.03
    4 4193822.205 38418796.007 513.520 511.520 2.0 0.93 2.93
    5 4193851.786 38418796.040 517.398 515.498 1.9 0.98 2.88
    6 4193883.553 38418797.068 519.543 517.843 1.7 1.13 2.83
    7 4193914.272 38418796.679 519.415 517.815 1.6 1.23 2.83
    8 4193943.485 38418795.969 520.527 518.827 1.7 1.43 3.13
    下载: 导出CSV

    表  4  仪器参数

    Table  4  Instrument parameters

    仪器名称项目参数
    雷达 天线中心频率/MHz 200
    天线类型 偶极天线
    A/D转换 16位
    数据传输 光纤传输
    工作方式 单孔反射
    天线长度/cm 210
    天线直径/mm 36
    YQG1手持式钻孔轨迹仪 倾角测量范围/(°) −90~90
    倾角绝对误差/(°) ±0.1(方位角为0)
    方位角测量范围/(°) 0~360
    方位角绝对误差/(°) ±1(倾角为0)
    仪器长度/cm 44
    仪器直径/mm 28
    下载: 导出CSV

    表  5  钻孔信息统计

    Table  5  Eight boreholes measurement information

    钻孔号雷达钻孔深度/m轨迹测量深度/mvc/(m·ns−1)
    1 14.0 13.5 0.154 32
    2 11.0 13.5 0.142 73
    3 13.0 12.7 0.151 74
    4 12.5 12.6 0.151 74
    5 13.0 9.0 0.148 85
    6 13.0 14.4 0.148 85
    7 13.0 13.5 0.148 85
    8 14.0 13.5 0.158 84
    下载: 导出CSV
  • [1] 朱梦博.采煤工作面高精度三维地质模型动态构建技术研究[D].北京: 煤炭科学研究总院, 2021.

    ZHU Mengbo.Dynamic construction of high−precision 3D geological model for coal mining panel[D].Beijing: China Coal Research Institute, 2021.
    [2] 程建远,朱梦博,王云宏,等. 煤炭智能精准开采工作面地质模型梯级构建及其关键技术[J]. 煤炭学报,2019,44(8):2285−2295.

    CHENG Jianyuan,ZHU Mengbo,WANG Yunhong,et al. Cascade construction of geological model of longwall panel for intelligent precision coal mining and its key technology[J]. Journal of China Coal Society,2019,44(8):2285−2295.
    [3] 程建远,刘文明,朱梦博,等. 智能开采透明工作面地质模型梯级优化试验研究[J]. 煤炭科学技术,2020,48(7):118−126.

    CHENG Jianyuan,LIU Wenming,ZHU Mengbo,et al. Experimental study on cascade optimization of geological models in intelligent mining transparency working face[J]. Coal Science and Technology,2020,48(7):118−126.
    [4] 程建远,聂爱兰,张鹏. 煤炭物探技术的主要进展及发展趋势[J]. 煤田地质与勘探,2016,44(6):136−141.. doi: 10.3969/j.issn.1001-1986.2016.06.025

    CHENG Jianyuan,NIE Ailan,ZHANG Peng. Outstanding progress and development trend of coal geophysics[J]. Coal Geology & Exploration,2016,44(6):136−141.. doi: 10.3969/j.issn.1001-1986.2016.06.025
    [5] 高卫富,翟培合,施龙青. 三维高密度电法在煤矿斑裂区探测中的应用[J]. 工程地球物理学报,2011,8(1):34−37.. doi: 10.3969/j.issn.1672-7940.2011.01.007

    GAO Weifu,ZHAI Peihe,SHI Longqing. Application of 3D high–density electrical method to detection of coal mine crack areas[J]. Chinese Journal of Engineering Geophysics,2011,8(1):34−37.. doi: 10.3969/j.issn.1672-7940.2011.01.007
    [6] 姬广忠.煤巷侧帮反射槽波成像方法及应用研究[D].北京: 煤炭科学研究总院, 2017.

    JI Guangzhong.Research on imaging methods and application of reflected in–seam wave at the roadway lateral wall of coal seam[D].Beijing: China Coal Research Institute, 2017.
    [7] 何文欣.工作面断层的三维槽波波场模拟与探测方法研究[D].徐州: 中国矿业大学, 2017.

    HE Wenxin.Three dimensions in–seam wave field simulation and detection method research of working face fault[D].Xuzhou: China University of Mining and Technology, 2017.
    [8] 王季,覃思,吴海,等. 随掘地震实时超前探测系统的试验研究[J]. 煤田地质与勘探,2021,49(4):1−7.. doi: 10.3969/j.issn.1001-1986.2021.04.001

    WANG Ji,QIN Si,WU Hai,et al. Experimental study on advanced real time detection system of seismic−while−excavating[J]. Coal Geology & Exploration,2021,49(4):1−7.. doi: 10.3969/j.issn.1001-1986.2021.04.001
    [9] 覃思.煤矿井下随采地震技术的试验研究[D].北京: 煤炭科学研究总院, 2015.

    QIN Si.Experimental study of seismic while mining in underground coal mines[D].Beijing: China Coal Research Institute, 2015.
    [10] 王云宏,王保利,程建远,等. 孔–巷联合随采地震相关时差层析成像[J]. 煤田地质与勘探,2021,49(3):199−204.

    WANG Yunhong,WANG Baoli,CHENG Jianyuan,et al. Borehole−roadway seismic−while−mining tomography using correlation time difference[J]. Coal Geology & Exploration,2021,49(3):199−204.
    [11] 程建远,覃思,陆斌,等. 煤矿井下随采地震探测技术发展综述[J]. 煤田地质与勘探,2019,47(3):1−9.. doi: 10.3969/j.issn.1001-1986.2019.03.001

    CHENG Jianyuan,QIN Si,LU Bin,et al. The development of seismic–while–mining detection technology in underground coal mines[J]. Coal Geology & Exploration,2019,47(3):1−9.. doi: 10.3969/j.issn.1001-1986.2019.03.001
    [12] 李东亮,原静,窦文武. ZTR12矿用地质雷达在晋城矿区探测的应用研究[J]. 煤炭科技,2019,40(3):1−4.. doi: 10.3969/j.issn.1008-3731.2019.03.001

    LI Dongliang,YUAN Jing,DOU Wenwu. Application research on ZTR12 mining geological radar in Jincheng mining area[J]. Coal Science & Technology Magazine,2019,40(3):1−4.. doi: 10.3969/j.issn.1008-3731.2019.03.001
    [13] 王小龙,蒋必辞,汪凯斌. 矿用电磁随钻伽马测井仪标定与试验[J]. 煤田地质与勘探,2019,47(5):208−212.. doi: 10.3969/j.issn.1001-1986.2019.05.029

    WANG Xiaolong,JIANG Bici,WANG Kaibin. Calibration and experiment of mine electromagnetic LWD gamma logging tool[J]. Coal Geology & Exploration,2019,47(5):208−212.. doi: 10.3969/j.issn.1001-1986.2019.05.029
    [14] 蒋必辞,汪凯斌,潘保芝,等. 煤矿井下电磁波无线随钻测井软件设计与实现[J]. 煤田地质与勘探,2016,44(6):152−158.. doi: 10.3969/j.issn.1001-1986.2016.06.028

    JIANG Bici,WANG Kaibin,PAN Baozhi,et al. Design and implementation of LWDEWCM software[J]. Coal Geology & Exploration,2016,44(6):152−158.. doi: 10.3969/j.issn.1001-1986.2016.06.028
    [15] ANNAN A P. Radio interferometry depth sounding:Part I−Theoretical discussion[J]. Geophysics,1973,38(3):557−580.. doi: 10.1190/1.1440360
    [16] ROSSITER J R,STRANGWAY D W,ANNAN A P,et al. Detection of thin layers by radio interferometry[J]. Geophysics,1975,40(2):299−308.. doi: 10.1190/1.1440526
    [17] 刘万里, 马修泽, 张学亮.基于探地雷达的特厚煤层厚度动态探测技术[J/OL].煤炭学报.https://doi.org/10.13225/j.cnki.jccs.2021.0671

    LIU Wanli, MA Xiuze, ZHANG Xueliang.Dynamic detection technology of extra–thick coal seam thickness based on ground penetrating radar[J/OL].Journal of China Coal Society.https://doi.org/10.13225/j.cnki.jccs.2021.0671
    [18] 钟声.钻孔雷达与数字摄像动态勘察技术若干关键问题研究[D].武汉: 中国科学院武汉岩土力学研究所, 2008.

    ZHONG Sheng.Key issues of dynamic exploration survey based on the borehole radar and digital imaging[D].Wuhan: Institute of Rock and Soil Mechanics, the Chinese Academy of Sciences, Wuhan, P. R. China, 2008.
    [19] VOGT D, PISANI P D.Borehole radar delineation of the VCR: An economically important sedimentary deposit[C]//Institute of Electrical and Electronics Engineers.Tenth International Conference on Ground Penetrating Radar, Deft, Netherlands, 21-24 June, 2004.
    [20] 刘四新,宋梓豪,程建远,等. 利用钻孔雷达探测煤矿井下顶底板界面的数值模拟研究[J]. 世界地质,2021,40(3):711−720.. doi: 10.3969/j.issn.1004-5589.2021.03.024

    LIU Sixin,SONG Zihao,CHENG Jianyuan,et al. Numerical simulation research on detecting underground coal mine roof and floor using borehole radar[J]. Global Geology,2021,40(3):711−720.. doi: 10.3969/j.issn.1004-5589.2021.03.024
    [21] 曾昭发, 刘四新, 冯晅, 等.探地雷达原理与应用[M].北京: 电子工业出版社, 2010.
    [22] WARREN D C,GIANNOPOULOS D A,GIANNAKIS D I,et al. GprMax:Open source software to simulate electromagnetic wave propagation for ground penetrating radar[J]. Computer Physics Communications,2016,209:163−170.. doi: 10.1016/j.cpc.2016.08.020
    [23] 冯晅, 曾昭发, 刘四新, 等.探地雷达信号处理[M].北京: 科学出版社, 2014.
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  447
  • HTML全文浏览量:  94
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-31
  • 修回日期:  2022-01-10
  • 发布日期:  2022-02-01
  • 网络出版日期:  2022-01-27

目录

    /

    返回文章
    返回