留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于透明地质的唐家会煤矿奥灰水防治技术

高耀全 高银贵 陆自清 孔皖军

高耀全,高银贵,陆自清,等.基于透明地质的唐家会煤矿奥灰水防治技术[J].煤田地质与勘探,2022,50(1):101−108. doi: 10.12363/issn.1001-1986.21.11.0619
引用本文: 高耀全,高银贵,陆自清,等.基于透明地质的唐家会煤矿奥灰水防治技术[J].煤田地质与勘探,2022,50(1):101−108. doi: 10.12363/issn.1001-1986.21.11.0619
GAO Yaoquan,GAO Yingui,LU Ziqing,et al.Prevention and control technology of Ordovician water in Tangjiahui Coal Mine based on transparent geology[J].Coal Geology & Exploration,2022,50(1):101−108. doi: 10.12363/issn.1001-1986.21.11.0619
Citation: GAO Yaoquan,GAO Yingui,LU Ziqing,et al.Prevention and control technology of Ordovician water in Tangjiahui Coal Mine based on transparent geology[J].Coal Geology & Exploration,2022,50(1):101−108. doi: 10.12363/issn.1001-1986.21.11.0619

基于透明地质的唐家会煤矿奥灰水防治技术

doi: 10.12363/issn.1001-1986.21.11.0619
基金项目: 国家重点研发计划课题(2018YFC0807804);天地科技股份有限公司科技创新创业资金专项项目(2019-TD-ZD003,2020-TD-ZD002)
详细信息
    第一作者:

    高耀全,1990年生,男,陕西靖边人,硕士,助理研究员,从事矿井水害防治与地质保障技术研究工作. E-mail:gaoyaoquan@cctegxian.com

  • 中图分类号: TD745

Prevention and control technology of Ordovician water in Tangjiahui Coal Mine based on transparent geology

  • 摘要: 唐家会煤矿6号煤开采面临导水断层多、隐伏导水构造发育,奥陶纪灰岩(简称奥灰)水害防治难度大的问题。经过不断的探索和实践,唐家会煤矿引进多种先进技术,获取大量地质、水文地质数据,构建智能地质保障系统,形成“物探钻探探查、井上下联合注浆治理、孔中瞬变电磁精细探查、注浆效果孔间电阻率检测、煤层底板微震电法联合监测”的技术思路。通过融合各类静态数据、动态数据、实时数据,完成断层、破碎带、含水层、低阻异常区等充水因素的数字建模,使地质要素、钻探物探数据可视化、透明化,以此为依托,建立一套基于透明地质的奥灰水害全时空防治体系,实现带压开采条件下奥灰水害的精细探查、靶向治理、效果检测和回采监测,取得了良好的应用效果。

     

  • 图  全时空水害防治体系

    Fig. 1  Whole time-space prevention and control system for coal mine water hazard

    图  唐家会煤矿水文地质模型

    Fig. 2  Hydrogeological model of Tangjiahui Coal Mine

    图  2个工作面水文地质模型

    Fig. 3  Hydrogeological model of two working faces

    图  井下定向钻孔对工作面的探查治理

    Fig. 4  Underground directional drilling for working face exploration management

    图  Y6异常区模型俯视图

    Fig. 5  Top view of the Y6 anomaly model

    图  异常区地面治理工程平面布置

    Fig. 6  Plane layout of ground treatment works in abnormal areas

    图  异常区地面治理三维图

    Fig. 7  3D map of ground treatment in anomaly areas

    图  井下钻探探查

    Fig. 8  Underground drilling exploration

    图  井下精细探查三维图

    Fig. 9  3D map of underground fine exploration

    图  10  注浆效果检测

    Fig. 10  Grouting effect detection

    图  11  微震事件俯视图

    Fig. 11  Top view of the microseismic events

    图  12  微震事件与有效隔水层顶界面、奥灰顶面空间关系三维视图

    Fig. 12  3D view of spatial relationship among microseismic events and top layer of effective barrier and top surface of Ordovician limestone

    图  13  孔间电阻率监测

    Fig. 13  Borehole resistivity monitoring

    图  14  水害预测预报三维视图

    Fig. 14  3D view of the forecast for coal mine water hazard

    表  1  建模数据来源

    Table  1  Modeling data source

    资料来源处理方法模型
    钻孔资料、揭煤资料、高密度三维地震检查、验证,空间插值矿井地质模型、工作面模型
    岩心实验测试、测井曲线、抽水试验计算孔隙率、渗透率、渗透系数,
    剖分几何结构、制定约束条件
    水文地质模型
    三维地震数据体、槽波、音频电透视数据体、井巷揭露情况相互验证、校准断层、异常体模型
    水文、微震、电法监测数据空间图元叠加属性模型
    图纸、井巷、设备、工业广场空间定义、激光扫描、倾斜摄影场景模型
    下载: 导出CSV
  • [1] 樊娟. 黔北矿区青龙煤矿瞬变电磁法在探查岩溶含水层特征中的应用[J]. 煤矿安全,2021,52(7):72−78.

    FAN Juan. Application of transient electromagnetic method in exploring karst aquifer in Qinglong Coal Mine of Qianbei mining area[J]. Safety in Coal Mines,2021,52(7):72−78.
    [2] 王程,蒋齐平. 几种矿井电法的应用分析[J]. 中国煤炭地质,2017,29(3):76−80.. doi: 10.3969/j.issn.1674-1803.2017.03.16

    WANG Cheng,JIANG Qiping. Applied analysis for some mine electrical methods[J]. Coal Geology of China,2017,29(3):76−80.. doi: 10.3969/j.issn.1674-1803.2017.03.16
    [3] 杨焱钧,朱书阶,张孝文,等. 反射槽波探测技术中速度分析方法研究[J]. 煤田地质与勘探,2020,48(5):218−224.. doi: 10.3969/j.issn.1001-1986.2020.05.027

    YANG Yanjun,ZHU Shujie,ZHANG Xiaowen,et al. Velocity analysis method of reflected in−seam wave detection technique[J]. Coal Geology & Exploration,2020,48(5):218−224.. doi: 10.3969/j.issn.1001-1986.2020.05.027
    [4] 吴荣新,沈国庆,王汉卿,等. 综采工作面薄煤区无线电波多频率透视精细探测[J]. 煤田地质与勘探,2020,48(4):34−40.. doi: 10.3969/j.issn.1001-1986.2020.04.005

    WU Rongxin,SHEN Guoqing,WANG Hanqing,et al. Multi frequency perspective fine detection of radio wave for thin coal areas in fully mechanized coal face[J]. Coal Geology & Exploration,2020,48(4):34−40.. doi: 10.3969/j.issn.1001-1986.2020.04.005
    [5] 方刚. 带压区巷道掘进防治水钻探工程及水化学特征研究[J]. 煤炭工程,2018,50(2):59−62.. doi: 10.11799/ce201802016

    FANG Gang. Research on water prevention−control drilling engineering and hydrochemical characteristics of roadway driving under water pressure zone[J]. Coal Engineering,2018,50(2):59−62.. doi: 10.11799/ce201802016
    [6] 高耀全,方刚,闫兴达. 邢东煤矿深部区域奥灰水害探查治理技术[J]. 煤矿安全,2021,52(5):87−95.

    GAO Yaoquan,FANG Gang,YAN Xingda. Exploration and control technology of Ordovician limestone water hazard in deep area of Xingdong Coal Mine[J]. Safety in Coal Mines,2021,52(5):87−95.
    [7] 刘再斌. 基于三维定向孔的深部水害探查治理技术研究[J]. 煤炭工程,2018,50(8):53−56.

    LIU Zaibin. Study on deep mine water detection and governance techniques based on 3D directional drilling[J]. Coal Engineering,2018,50(8):53−56.
    [8] 高尚,孙晓宇,戴亚男,等. 煤层底板薄层灰岩地面定向孔注浆技术[J]. 建井技术,2021,42(4):39−44.

    GAO Shang,SUN Xiaoyu,DAI Ya’nan,et al. Grouting technology with ground directional drilling hole for thin limestone of seam floor[J]. Mine Construction Technology,2021,42(4):39−44.
    [9] 方俊. 基于井下定向钻孔的矿井地质异常体探查方法与应用[J]. 煤田地质与勘探,2021,49(4):269−277.. doi: 10.3969/j.issn.1001-1986.2021.04.032

    FANG Jun. Exploration method of underground geological anomaly and its application based on directional drilling[J]. Coal Geology & Exploration,2021,49(4):269−277.. doi: 10.3969/j.issn.1001-1986.2021.04.032
    [10] 张杰,姚宁平,李乔乔. 煤矿井下定向钻进技术在矿井地质勘探中的应用[J]. 煤矿安全,2013,44(10):131−134.

    ZHANG Jie,YAO Ningping,LI Qiaoqiao. Application of directional drilling technology in mines geological exploration[J]. Safety in Coal Mines,2013,44(10):131−134.
    [11] 张坤,方海,李邵东,等. 大埋深坚硬顶板厚煤层冲击地压微震监测及防治措施[J]. 中国矿业,2021,30(10):77−83.

    ZHANG Kun,FANG Hai,LI Shaodong,et al. Microseismic monitoring and prevention of working face rock burst in thick coal seam with hard roof and large buried depth[J]. China Mining Magazine,2021,30(10):77−83.
    [12] LI Zhen,XU Rongchao. An early–warning method for rock failure based on Hurst exponent in acoustic emission/microseismic activity monitoring[J]. Bulletin of Engineering Geology and the Environment,2021,80(10):7791−7805.. doi: 10.1007/s10064-021-02446-5
    [13] 刘再斌,刘程,刘文明,等. 透明工作面多属性动态建模技术[J]. 煤炭学报,2020,45(7):2628−2635.

    LIU Zaibin,LIU Cheng,LIU Wenming,et al. Multi−attribute dynamic modeling technique for transparent working face[J]. Journal of China Coal Society,2020,45(7):2628−2635.
    [14] 程建远,朱梦博,王云宏,等. 煤炭智能精准开采工作面地质模型梯级构建及其关键技术[J]. 煤炭学报,2019,44(8):2285−2295.

    CHENG Jianyuan,ZHU Mengbo,WANG Yunhong,et al. Cascade construction of geological model of longwall panel for intelligent precision coal mining and its key technology[J]. Journal of China Coal Society,2019,44(8):2285−2295.
    [15] 马丽,段中会,张建军,等. 基于精细勘查的煤矿地质保障信息系统[J]. 中国煤炭地质,2020,32(9):70−73.. doi: 10.3969/j.issn.1674-1803.2020.09.11

    MA Li,DUAN Zhonghui,ZHANG Jianjun,et al. Coalmine geological security information system based on fine prospecting[J]. Coal Geology of China,2020,32(9):70−73.. doi: 10.3969/j.issn.1674-1803.2020.09.11
    [16] 袁亮,张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报,2019,44(8):2277−2284.

    YUAN Liang,ZHANG Pingsong. Development status and prospect of geological guarantee technology for precise coal mining[J]. Journal of China Coal Society,2019,44(8):2277−2284.
    [17] 朱树来. 矿井孔中瞬变电磁法探测技术研究与应用[J]. 地下空间与工程学报,2020,16(增刊1):236−240.

    ZHU Shulai. Research and application of drillhole transient electromagnetic detection technology[J]. Chinese Journal of Underground Space and Engineering,2020,16(Sup.1):236−240.
    [18] 靳德武,赵春虎,段建华,等. 煤层底板水害三维监测与智能预警系统研究[J]. 煤炭学报,2020,45(6):2256−2264.

    JIN Dewu,ZHAO Chunhu,DUAN Jianhua,et al. Research on 3D monitoring and intelligent early warning system for water hazard of coal seam floor[J]. Journal of China Coal Society,2020,45(6):2256−2264.
    [19] 靳德武,乔伟,李鹏,等. 煤矿防治水智能化技术与装备研究现状及展望[J]. 煤炭科学技术,2019,47(3):10−17.

    JIN Dewu,QIAO Wei,LI Peng,et al. Research status and prospects on intelligent technology and equipment for mine water hazard prevention and control[J]. Coal Science and Technology,2019,47(3):10−17.
    [20] 陆自清. 基于边界元方法的次级断裂信息挖掘试验研究[J]. 煤田地质与勘探,2020,48(5):211−217.. doi: 10.3969/j.issn.1001-1986.2020.05.026

    LU Ziqing. Experiment of secondary fault information mining based on boundary element method[J]. Coal Geology & Exploration,2020,48(5):211−217.. doi: 10.3969/j.issn.1001-1986.2020.05.026
    [21] 陆自清. 基于卡尔曼滤波的动态地质模型导向方法[J]. 石油钻探技术,2021,49(1):113−120.. doi: 10.11911/syztjs.2020135

    LU Ziqing. Geosteering methods of a dynamic geological model based on Kalman filter[J]. Petroleum Drilling Techniques,2021,49(1):113−120.. doi: 10.11911/syztjs.2020135
    [22] 段建华. 煤层底板突水综合监测技术及其应用[J]. 煤田地质与勘探,2020,48(4):19−28.. doi: 10.3969/j.issn.1001-1986.2020.04.003

    DUAN Jianhua. Integrated monitoring technology of water inrush from coal seam floor and its application[J]. Coal Geology & Exploration,2020,48(4):19−28.. doi: 10.3969/j.issn.1001-1986.2020.04.003
    [23] 王鑫,吴际,刘超,等. 基于LSTM 循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报,2018,44(4):772−784.

    WANG Xin,WU Ji,LIU Chao,et al. Exploring LSTM based recurrent neural network for failure time series prediction[J]. Journal of Beijing University of Aeronautics and Astronautics,2018,44(4):772−784.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  207
  • HTML全文浏览量:  17
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-02
  • 修回日期:  2022-01-05
  • 发布日期:  2022-02-01
  • 网络出版日期:  2022-01-27

目录

    /

    返回文章
    返回