Characteristics and detection performance of the source of seismic while excavating in underground coal mines
-
摘要: 煤矿智能化背景下,随掘地震已经成为掘进工作面安全掘进的地质保障关键技术之一,可实时、超前、精细探明掘进前方的隐蔽地质构造,如采空区、断层、陷落柱等,有效促进掘进生产安全高效。不同于广泛采用的反射槽波超前探测技术,随掘地震采用了掘进机掘进时震动信号作为激发源,替代了常规地震勘探中的炸药震源,具有震源绿色、安全、成本低、可重复、探掘同步等优点。由于掘进机震源在激发方式、能量、频率、带宽等方面与炸药震源差别较大,因此其探测性能受到很多关注。从随掘地震的震源机制、波场特征、传播距离、成像准确率等方面进行研究,详细分析其探测性能,认为随掘地震波场中槽波和横波发育,可利用槽波或横波进行超前探测;Y分量具有更好的信噪比优势,但在实际应用时考虑到反射面的走向,相同设备量情况下,Z分量更有优势;随掘地震的直达横波传播距离可达700 m以上,横波超前探测距离可达到300 m以上;随掘地震的直达槽波传播距离可达400 m 以上,槽波超前探测距离可达到170 m以上;常规掘进速度下,反射波叠加次数可达到16次,相比常规的一次探测,信噪比可提升4倍,有效提高了探测精度和准确度。后续将通过大量的随掘应用数据进一步修正随掘地震技术的性能参数。Abstract: Against a background of intelligent coal mines, seismic while excavating has become one of the key geological guarantee technologies for safe excavation in the mining face. It can detect hidden geological structures in real-time, in advance and finely, such as goafs, faults, and collapsed columns, effectively promoting safe and efficient excavation and production. Different from the widely used advanced detection technology of reflection in-seam wave, the vibration signal of the tunneling machine is used as the excitation source, which replaces the explosive source in conventional seismic exploration. It has the advantages of environmental frendliness, safety, low cost, recyclability and combined exploration and excavation. Great differences between the TBM(Tunnel Boring Machine) source and the explosive source in excitation mode, energy, frequency and bandwidth cause much attention to the former’s detection performance. By studying the focal mechanism, wave field characteristics, propagation distance and imaging accuracy of the seismic-while-excavating, its detection performance is analyzed in detail. It is considered that the in-seam wave and shear wave in the wave field of the seismic caused by excavation is sufficient, and can be used for advanced detection. The Y component has the advantage of better signal-to-noise ratio, but with the trend of reflection surface being considered in practical application; the Z component has more advantages with the same amount of equipment. The direct S-wave propagation distance of seismic-while-excavating can reach more than 700 meters, and the advance detection distance of S-wave 300 meters. The propagation distance of direct in-seam wave of seismic-while-excavating can exceed 400 meters, and the advance detection distance of in-seam wave 170 meters. At a normal excavating speed, the reflected waves can be superposed for 16 times. Compared with a conventional detection, the signal-to-noise ratio can be increased by 4 times, which effectively improves the detection accuracy. The performance parameters of the seismic-while-excavating technology will be further modified through a large number of application data.
-
Key words:
- seismic while excavating /
- heading face /
- dynamic detection /
- seismic source of TBM
-
表 1 2种掘进机相关技术参数
Table 1 Relevant technical parameters of two kinds of roadheaders
掘进机型号 截割头
长度/m截割头
直径/m牵引速度/
(m·min−1)JM340D 5.5 1.0 1.54 EBZ160TY 0.9 0.946 2.4 表 2 各层介质参数
Table 2 Medium parameters of each layer
层号 纵波速度/(m·s−1) 横波速度/(m·s−1) 密度/(kg·m−3) 1 3 800 2 000 2 400 2 1 800 1 100 1 400 3 3 800 2 000 2 400 -
[1] 夏宇靖,杨体仁,杨战宁. 独头巷道超前勘探的有效手段: 瑞雷波勘探技术井下超前勘探试验结果述评[J]. 煤田地质与勘探,1992,20(5):50−52.XIA Yujing,YANG Tiren,YANG Zhanning. An efficient means for advance exploration in dead ends: A review of results of Rayleigh wave prospecting test for advance exploration in underground coal mines[J]. Coal Geology & Exploration,1992,20(5):50−52. [2] 王季,覃思,吴海,等. 随掘地震实时超前探测系统的试验研究[J]. 煤田地质与勘探,2021,49(4):1−7.. doi: 10.3969/j.issn.1001-1986.2021.04.001WANG Ji,QIN Si,WU Hai,et al. Experimental study on advanced real time detection system of seismic−while−excavating[J]. Coal Geology & Exploration,2021,49(4):1−7.. doi: 10.3969/j.issn.1001-1986.2021.04.001 [3] 姬广忠.煤巷侧帮反射槽波成像方法及应用研究[D].北京: 煤炭科学研究总院, 2017.JI Guangzhong.Research on imaging methods and application of reflected in−seam wave at the roadway lateral wall of coal seam[D].Beijing: China Coal Research Institute, 2017. [4] 姬广忠. 反射槽波绕射偏移成像及应用[J]. 煤田地质与勘探,2017,45(1):121−124.. doi: 10.3969/j.issn.1001-1986.2017.01.024JI Guangzhong. Diffraction migration imaging of reflected in−seam waves and its application[J]. Coal Geology & Exploration,2017,45(1):121−124.. doi: 10.3969/j.issn.1001-1986.2017.01.024 [5] 王鹏,鲁晶津,王信文. 再论巷道直流电法超前探测技术的有效性[J]. 煤炭科学技术,2020,48(12):257−263.WANG Peng,LU Jingjin,WANG Xinwen. Restudy on effectivity of direct current advance detection method in roadway[J]. Coal Science and Technology,2020,48(12):257−263. [6] 程久龙,赵家宏,董毅,等. 基于LBA–BP的矿井瞬变电磁法岩层富水性的定量预测研究[J]. 煤炭学报,2020,45(1):330−337.CHENG Jiulong,ZHAO Jiahong,DONG Yi,et al. Quantitative prediction of water abundance in rock mass by transient electro−magnetic method with LBA−BP neural network[J]. Journal of China Coal Society,2020,45(1):330−337. [7] TAYLOR N, MERRIAM J, GENDZWILL D, et al.The mining machine as a seismic source for in seam reflection mapping[C]//SEG Technical Program Expanded Abstracts, 2001: 1365–1368. [8] 胡应曦. 悬臂掘进机截割头功率和运动参数的分析[J]. 煤矿机械,1983(3):9−16.HU Yingxi. Analysis of cutting head power and motion parameters of cantilever roadheader[J]. Coal Mine Machinery,1983(3):9−16. [9] 刘欢,费小雪,贾吉喆,等. 随掘地震震源特征研究[J]. 能源技术与管理,2015,40(1):17−19.. doi: 10.3969/j.issn.1672-9943.2015.01.006LIU Huan,FEI Xiaoxue,JIA Jizhe,et al. Study on focal characteristics of digging earthquake[J]. Energy Technology and Management,2015,40(1):17−19.. doi: 10.3969/j.issn.1672-9943.2015.01.006 [10] 刘强. L1范数约束的随掘地震噪声衰减[J]. 煤炭学报,2021,46(8):2699−2705.LIU Qiang. Noise attenuation based on L1−norm constraint inversion in seismic while drilling[J]. Journal of China Coal Society,2021,46(8):2699−2705. [11] 覃思.煤矿井下随采地震技术的试验研究[D].北京: 煤炭科学研究总院, 2015.QIN Si.Experimental study of seismic while mining in underground coal mines[D].Beijing: China Coal Research Institute, 2015. [12] 李亚豪,程久龙,姜旭,等. 基于互相关的随掘地震超前探测有效信号提取方法研究[J]. 中国矿业,2020,29(5):82−85.LI Yahao,CHENG Jiulong,JIANG Xu,et al. Research on effective signals extraction method of seismic while drilling ahead detection based on cross–correlation[J]. China Mining Magazine,2020,29(5):82−85. [13] 李圣林, 张平松, 姬广忠, 等.随掘地震超前探测掘进机震源信号的复合干涉处理研究[J/OL].采矿与安全工程学报: 1–14 [2021–11–09].https://doi.org/10.13545/j.cnki.jmse.2021.0164.LI Shenglin, ZHANG Pingsong, JI Guangzhong, et al.Research on compound interference processing of roadheader source signal for advanced seismic detection while drifting[J].Journal of Mining and Safety Engineering: 1–14 [2021–11–09].https://doi.org/10.13545/j.cnki.jmse.2021.0164. [14] 黄民,吴淼,安伟,等. 横切割头掘进机械振动测试及模态分析[J]. 中国矿业大学学报,1997,26(2):15−19.HUANG Min,WU Miao,AN Wei,et al. Vibration measurement and modal analysis for horizontal axis tunneller[J]. Journal of China University of Mining & Technology,1997,26(2):15−19. -