留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自进式直旋混合射流钻头结构优化与钻孔能力分析

杜鹏 张汶定

杜鹏,张汶定. 自进式直旋混合射流钻头结构优化与钻孔能力分析[J]. 煤田地质与勘探,2022,50(7):173−182. doi: 10.12363/issn.1001-1986.21.11.0696
引用本文: 杜鹏,张汶定. 自进式直旋混合射流钻头结构优化与钻孔能力分析[J]. 煤田地质与勘探,2022,50(7):173−182. doi: 10.12363/issn.1001-1986.21.11.0696
DU Peng,ZHANG Wending. Structure optimization and drilling capacity analysis of a self-propelled straight-swirling mixed jet bits[J]. Coal Geology & Exploration,2022,50(7):173−182. doi: 10.12363/issn.1001-1986.21.11.0696
Citation: DU Peng,ZHANG Wending. Structure optimization and drilling capacity analysis of a self-propelled straight-swirling mixed jet bits[J]. Coal Geology & Exploration,2022,50(7):173−182. doi: 10.12363/issn.1001-1986.21.11.0696

自进式直旋混合射流钻头结构优化与钻孔能力分析

doi: 10.12363/issn.1001-1986.21.11.0696
基金项目: 国家自然科学基金青年项目(51804007)
详细信息
    第一作者:

    杜鹏,1987年生,男,山东临沂人,博士,讲师,研究方向为高压水射流理论及技术. E-mail:dpeng@aust.edu.cn

    通信作者:

    张汶定,1997年生,男,河南平顶山人,硕士研究生,研究方向为高压水射流理论及技术. E-mail: l1579623@163.com

  • 中图分类号: TD231.62

Structure optimization and drilling capacity analysis of a self-propelled straight-swirling mixed jet bits

  • 摘要: 自进式射流钻头作为水力喷射径向钻井技术开采煤系气的核心部件,对钻井效率有决定性影响。为获取直旋混合射流钻头结构的最优参数,采用Fluent数值模拟与室内钻进试验相结合的办法,分析不同钻头结构参数下三维流场的速度特性,给出优化准则,并通过钻进试验加以验证,得到钻头的最优参数:中心孔孔径1.2 mm,叶轮槽槽宽0.7 mm,叶轮长度4.5 mm,叶轮径向长度3.5 mm,倾角45°,混合腔腔长6 mm。并通过理论分析解释了不同参数对钻头钻进速度产生变化的原因,主要是通过影响直旋混合射流中直射流与旋转射流的通量,进而引起射流三维的变化。采用灰色关联分析法得出各参数结构对钻进位移的敏感性系数由高到低依次为:中心孔孔径、叶轮槽宽、叶轮径向长度、混合腔腔长、叶轮倾角、叶轮长度。室内钻进试验结果表明:优化后的射流钻头具有更高的钻进效率,在关联分析中对钻进效率影响最大的是直射流与旋转射流通量,且直旋通量比在0.54时,射流能量分配较合理。研究成果对径向钻井煤层气、天然气开采中钻头的设计与结构优化具有指导意义。

     

  • 图  射流钻头结构

    Fig. 1  Jet bit structure

    图  射流空间三维速度

    Fig. 2  Three-dimensional velocity of jet space

    图  内外流场模型

    Fig. 3  Internal and external flow field of the jet

    图  混合网格划分

    Fig. 4  Hybrid meshing

    图  外流场速度数据提取位置

    Fig. 5  Location of outflow field velocity data extraction

    图  直旋旋混合射流速度分布云图

    Fig. 6  Cloud diagram of the velocity distribution of the direct rotating mixed jet

    图  叶轮槽槽宽与流场速度的变化规律

    Fig. 7  Variation law of flow field velocity with different impeller slot widths

    图  叶轮槽径向长度与流场速度的变化规律

    Fig. 8  Variation law of flow field velocity with the different radial lengths of the impeller slot

    图  混合腔长度与流场速度的变化规律

    Fig. 9  Variation law of flow field velocity with different mixing cavity lengths

    图  10  实验仪器与叶轮

    Fig. 10  Experimental equipment and impellers

    图  11  水泥试件钻进前后对比

    Fig. 11  Comparison before and after drilling

    图  12  不同孔径钻进位移

    Fig. 12  Drilling displacement with different hole diameters

    图  13  不同槽宽、不同径向长度钻进位移

    Fig. 13  Drilling displacement with different groove widths and radial lengths

    图  14  不同倾角钻进位移

    Fig. 14  Drilling displacement with different dip angles

    图  15  不同叶轮长度钻进位移

    Fig. 15  Drilling displacement with different impeller lengths

    图  16  不同混合腔腔长钻进位移

    Fig. 16  Drilling displacement with different mixing chamber lengths

    表  1  钻头参数尺寸

    Table  1  Different bit parameters and sizes

    钻头
    编号
    叶轮
    倾角/(°)
    中心孔
    孔径/mm
    叶轮槽
    槽宽/mm
    叶轮
    长度/mm
    叶轮槽径
    向长度/mm
    混合腔
    腔长/mm
    1 35 1.2 0.7 4.5 3.5 6
    2 40 1.2 0.7 4.5 3.5 6
    3 45 1.2 0.7 4.5 3.5 6
    4 50 1.2 0.7 4.5 3.5 6
    5 45 0.8 0.7 4.5 3.5 6
    6 45 1.6 0.7 4.5 3.5 6
    7 45 1.2 0.5 4.5 3.5 6
    8 45 1.2 0.9 4.5 3.5 6
    9 45 1.2 0.7 4.0 3.5 6
    10 45 1.2 0.7 5.0 3.5 6
    11 45 1.2 0.7 4.5 2.5 6
    12 45 1.2 0.7 4.5 3.0 6
    13 45 1.2 0.7 4.5 4.0 6
    14 45 1.2 0.7 4.5 3.5 4
    15 45 1.2 0.7 4.5 3.5 8
    下载: 导出CSV

    表  2  网格无关性分析

    Table  2  Grid independence analysis

    网格数量 轴心最大速度/(m·s−1)
    85 746 177.4
    112 376 179.6
    146 725 179.7
    173 413 179.7
    下载: 导出CSV

    表  3  端面直旋通量比

    Table  3  End face direct rotation flux ratio

    钻头编号 通量比 位移/mm
    3 0.54 37
    5 0.24 8
    6 0.96 22
    7 0.76 19
    8 0.42 25
    11 0.82 13
    12 0.65 24
    13 0.46 19
    下载: 导出CSV

    表  4  钻进位移灰色关联度初值化计算结果

    Table  4  Preliminary calculation results of grey correlation degree of drilling displacement

    比较序列 关联度 敏感性排序
    叶轮槽槽宽 0.611 7 2
    叶轮径向长度 0.604 5 3
    中心孔孔径 0.613 5 1
    混合腔腔长 0.602 9 4
    叶轮长度 0.593 6 6
    叶轮倾角 0.598 6 5
    下载: 导出CSV
  • [1] 董大忠, 邹才能, 杨桦, 等. 中国页岩气勘探开发进展与发展前景[J]. 石油学报, 2012, 33(增刊1): 107–114.

    DONG Dazhong, ZOU Caineng, YANG Hua, et al. Progress and prospects of shale gas exploration and development in China[J]. Acta Petrolei Sinica, 2012, 33(Sup. 1): 107–114.
    [2] 郭彤楼. 页岩气勘探开发中的几个地质问题[J]. 油气藏评价与开发, 2019, 9(5): 14–19.. doi: 10.3969/j.issn.2095-1426.2019.05.002

    GUO Tonglou. A few geological issues in shale gas exploration and development[J]. Reservoir Evaluation and Development, 2019, 9(5): 14–19.. doi: 10.3969/j.issn.2095-1426.2019.05.002
    [3] 宋岩, 张新民, 柳少波. 中国煤层气基础研究和勘探开发技术新进展[J]. 天然气工业, 2005, 25(1): 1–7.. doi: 10.3321/j.issn:1000-0976.2005.01.002

    SONG Yan, ZHANG Xinmin, LIU Shaobo. Subject headings: Coalbed methane, research progress, existing problem, China[J]. Natural Gas Industry, 2005, 25(1): 1–7.. doi: 10.3321/j.issn:1000-0976.2005.01.002
    [4] 董大忠, 邹才能, 李建忠, 等. 页岩气资源潜力与勘探开发前景[J]. 地质通报, 2011, 30(2–3): 324–336.

    DONG Dazhong, ZOU Caineng, LI Jianzhong, et al. Resource potential, exploration and development prospect of shale gas in the whole world[J]. Geological Bulletin of China, 2011, 30(2–3): 324–336.
    [5] 刘晓, 李勇, 宣德全, 等. 软煤夹层水射流层状卸压增透抽采瓦斯数值模拟及试验[J]. 煤田地质与勘探, 2021, 49(2): 54–61.

    LIU Xiao, LI Yong, XUAN Dequan, et al. Numerical simulation and test of gas drainage with water jet layered pressurerelief and permeability enhancement in soft coal seam [J]. Coal Geology & Exploration, 2021, 49(2): 54–61.
    [6] 廖华林, 牛继磊, 程宇雄, 等. 多孔喷嘴破岩钻孔特性的实验研究[J]. 煤炭学报, 2011, 36(11): 1858–1862.

    LIAO Hualin, NIU Jilei, CHENG Yuxiong, et al. Experimental study on water jet breaking rock by multi–orifice nozzle[J]. Journal of China Coal Society, 2011, 36(11): 1858–1862.
    [7] 张彪. 煤层气径向钻井水力破煤机理研究[D]. 北京: 中国石油大学(北京), 2017.

    ZHANG Biao. Study on hydraulic coal breaking mechanism of CBM radial drilling[D]. Beijing: China University of Petroleum(Beijing), 2017.
    [8] 桂小玲. 高压水射流技术在煤层气开发中的应用研究现状及发展趋势[J]. 能源与环保, 2018, 40(8): 1–4.

    GUI Xiaoling. Research status and prospect of high pressure water jet in coal–gas exploration[J]. China Energy and Environmental Protection, 2018, 40(8): 1–4.
    [9] 刘勇, 卢义玉, 李晓红, 等. 高压脉冲水射流顶底板钻孔提高煤层瓦斯抽采率的应用研究[J]. 煤炭学报, 2010, 35(7): 1115–1119.

    LIU Yong, LU Yiyu, LI Xiaohong, et al. Application of drilling in roof or floor with high pulse pressure water jet to improve gas drainage[J]. Journal of China Coal Society, 2010, 35(7): 1115–1119.
    [10] 王伟. 高压旋转水射流破煤及其冲孔造穴卸压增透机制与应用[D]. 徐州: 中国矿业大学, 2016.

    WANG Wei. Coal breakage impact by high pressure rotary water jet and induced pressure relief and permeability enhancement by hydraulic flushing cavity: Mechanism and application[D]. Xuzhou: China University of Mining and Technology, 2016.
    [11] 高亚斌. 钻孔水射流冲击动力破煤岩增透机制及其应用研究[D]. 徐州: 中国矿业大学, 2016.

    GAO Yabin. Research on the mechanism of permeability enhancement based on breaking coal−rock by dynamic impact of water jet in boreholes and its application on gas extraction[D]. Xuzhou: China University of Mining and Technology, 2016.
    [12] DICKINSON W,ANDERSON R R,DICKINSON R W. The ultrashort–radius radial system[J]. SPE Drilling Engineering,1989,4(3):247−254.. doi: 10.2118/14804-PA
    [13] BUCKMAN J D, DOTSON T L, BELL W S, et al. Nozzle for jet drilling and associated method: USA, 6668948[P]. 2003–12–30.
    [14] 张小宁, 刘新云, 张明坤, 等. 新型双射流喷嘴冲击井底流场数值模拟研究[J]. 石油机械, 2014, 42(9): 11–14.. doi: 10.3969/j.issn.1001-4578.2014.09.003

    ZHANG Xiaoning, LIU Xinyun, ZHANG Mingkun, et al. Numerical simulation of flow field of novel dual–jet nozzle jetting on bottomhole[J]. China Petroleum Machinery, 2014, 42(9): 11–14.. doi: 10.3969/j.issn.1001-4578.2014.09.003
    [15] 吴德松, 廖华林, 杨斌. 直旋混合射流喷嘴结构参数对流场特性的影响[J]. 水动力学研究与进展 A 辑, 2014, 29(4): 421–428

    WU Desong, LIAO Hualin, YANG Bin. Study on the influence of nozzle structural parameters of straight–swirling integrated jet on flow field characteristics[J]. Chinese Journal of Hydrodynamics, 2014, 29(4): 421–428.
    [16] 毕刚, 李根生, 沈忠厚, 等. 径向水平井自进式旋转射流钻头流场特性分析[J]. 流体机械, 2014, 42(5): 25–30.. doi: 10.3969/j.issn.1005-0329.2014.05.006

    BI Gang, LI Gensheng, SHEN Zhonghou, et al. Flow field study on self–propelled conical jet bit for radial horizontal drilling[J]. Fluid Machinery, 2014, 42(5): 25–30.. doi: 10.3969/j.issn.1005-0329.2014.05.006
    [17] 杜鹏. 直旋混合射流流场特性及破岩机理研究[D]. 重庆: 重庆大学, 2016.

    DU Peng. Study on the flow field and rock breaking mechanism of straight−swirling integrated jet[D]. Chongqing: Chongqing University, 2016.
    [18] 杜鹏, 卢义玉, 汤积仁, 等. 新型直旋混合射流破岩特性及机理分析[J]. 西安交通大学学报, 2016, 50(3): 81–89.

    DU Peng, LU Yiyu, TANG Jiren, et al. Characteristics and mechanism of rock breaking for new type straight–swirling integrated jet[J]. Journal of Xi’an Jiaotong University, 2016, 50(3): 81–89.
    [19] 杜鹏, 董超超, 张汶定, 等. 直旋混合射流钻头流场及关键参数研究[J]. 煤矿机械, 2021, 42(10): 61–63.

    DU Peng, DONG Chaochao, ZHANG Wending, et al. Study on flow field and key parameters of straight–swirling mixing jet bit[J]. Coal Mine Machinery, 2021, 42(10): 61–63.
    [20] HAYASHI C, SHEPARD S, WINKLER I, et al. Nonlinear oscillations in physical systems[M]. New York: McGraw–Hill, 1964.
    [21] 孙久瑞. 煤层气井近井区煤岩破碎研究及安全分析[D]. 青岛: 中国石油大学(华东), 2017.

    SUN Jiurui. Research and safety analysis of coal rock fracturing in the near wellbore of coalbed methane wells[D]. Qingdao: China University of Petroleum (East China), 2017.
    [22] 张启龙, 田守嶒, 陈立强, 等. 基于灰色关联度的超临界二氧化碳直旋射流参数敏感性[J]. 大庆石油地质与开发, 2021, 40(4): 63–72.

    ZHANG Qilong, TIAN Shouceng, CHEN Liqiang, et al. Parameter sensitivity of supercritical CO2 swirling–round jet based on grey correlation degree method[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(4): 63–72.
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  18
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-27
  • 修回日期:  2022-02-17
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回