Reservoir forming characteristics and favorable area evaluation of deep coalbed methane in Daning-Jixian Block
-
摘要: 鄂尔多斯盆地东缘大宁–吉县区块下二叠统太原组埋深大于2 000 m的8号煤是国内首个千亿方级别的深层煤层气田,但是深层煤层气成藏特征尚不明确。综合应用地质、测试、生产资料,开展深层煤层气成藏特征及有利区评价2方面研究。结果表明:研究区深层煤储层全区发育、厚度大、热演化程度高、两期成藏及古热流体侵入,使其具备大量生烃的条件;深层煤储层裂隙、微孔广泛发育,储层具备吸附气和游离气共同赋存的条件;顶底板以灰岩及泥岩为主,封盖能力强,具备游离气保存条件;深层煤层气具有“广覆式生烃、高含气、高饱和、高压束缚游离气与吸附气共存”的赋存特征。建立了深层煤层气“地质–工程”双甜点识别指标体系12项,划分了3类工程–地质甜点区,其中,地质–工程Ⅰ类甜点区位于研究区的西北部,地质–工程Ⅱ类甜点区位于研究的中部,地质Ⅱ类–工程Ⅰ类甜点区位于研究东北部和南部;在地质–工程Ⅰ类甜点区内实施的JS-01井自喷生产,最高日产气9.4~9.7万m3,展现了良好的上产潜力。研究成果有效指导了深层煤层气先导试验区的优选及国内首个千亿方级别的深层煤层气田探明。Abstract: The No.8 coal with a buried depth of more than 2 000 m of Lower Permian Taiyuan Formation in Daning-Jixian block, eastern margin of Ordos Basin is the first deep CBM field with an output of 100 billion m3 in China, but the reservoir forming characteristics of deep CBM are still unclear. In this paper, geological information, test and production data are synthetically applied to study the characteristics of deep CBM reservoir formation and evaluation of favorable areas. The results show that the deep coal reservoir in the study area is extensively distributed, with large thickness and high degree of thermal evolution. Two-stage reservoir formation and paleothermal fluid intrusion provide premise for substantial hydrocarbon generation. In addition, fractures and micropores are widely developed in deep coal reservoir, where adsorbed gas and free gas coexistence. The roof and floor are mainly limestone and mudstone, with strong capping ability and free gas preservation conditions. The deep CBM possesses the characteristics of “extensive hydrocarbon generation, high gas content, high saturation, high pressure bound free gas and adsorption gas coexistence”. Originally, twelve geological-engineering double sweet spot identification index systems for deep CBM are established, and three types of geological-engineering sweet spots are identified. Among them, geological engineering class I sweet spot is located in the northwest of the study area, geological engineering class sweet spot is located in the middle of the study area, and geological class Ⅱ engineering class Ⅰ sweet spot is located in the northeast and south of the study area; The flowing well JS-01 implemented in the geological engineering class I sweet spot has a maximum daily gas production of 94 000-97 000 m3, showing a good production potential. The research results effectively guide the optimization of the pilot trial area of deep CBM and the exploration of the first deep CBM field of 100 billion cubic meters in China.
-
表 1 吉县中浅层与深层煤储层特征对比
Table 1 Comparison of middle-shallow and deep coal reservoirs in Jixian
参数 中浅层(埋深小于1 500 m) 深层(埋深大于2 000 m) 地层组 C–P C–P 开采深度/m 300~1 200 2 000~2 600 煤层厚度/m 3~5 5~12 煤体结构 构造煤为主 原生结构煤为主 镜质体反射率/% 1.2~2.0 2.3~2.8 含气量/(m3·t−1) 8~15 20~35 渗透率/(10−3 μm2) 0.01~0.8 0.01~0.05 孔隙率/% 5~15 3~8 有机质体积分数/% 80.7 89.7 无机矿物成分 黏土矿物为主 碳酸盐岩类、氧化硅类为主 压裂后单井日产气量/104 m3 0.03 0.5~10 表 2 研究区地层水矿化度
Table 2 Salinity of formation water in the study area
井号 离子质量浓度/(mg·L−1) 总矿化度/
(mg·L−1)水型 Ca2+ Mg2+ Na+ K+ HCO− 3 SO4 2− Cl− DJ1 68855 2663 40967 911 300 39 207829 321262 CaCl2 DJ2 27990 1454 23875 1 953 300 43 100876 156190 CaCl2 DJ3 1358 309 13764 261 100 33 24434 40158 CaCl2 DJ4 9971 1505 8449 1244 900 36 61818 83023 CaCl2 DJ5 25246 790 22193 1189 100 54 93387 142859 CaCl2 DJ6 16182 1458 19034 1465 950 36 69326 107501 CaCl2 表 3 大宁−吉县区块深层与浅层煤含气量、含气饱和度对比
Table 3 Comparison of deep and shallow coal gas content and gas saturation in Daning-Jixian Block
浅层 深层 井号 含气量/(m3·t−1) 含气饱和度/% 深度/m 井号 含气量/(m3·t−1) 含气饱和度/% 深度/m J1 9.14 51.78 1 144.8 DJ1 21.31 87.90 2 118 J2 9.42 58.48 1 139.3 DJ 2 23.45 99.98 2 276 J3 11.70 49.41 1 145.0 DJ 3 28.50 100.00 2 173 J4 14.21 78.80 1 176.0 DJ 4 29.59 100.00 2 143 J5 14.76 82.50 1 055.0 DJ 5 26.24 98.47 2 166 表 4 大宁−吉县区块煤岩柱样核磁共振测试结果
Table 4 Nuclear magnetic resonance test results of coal and rock cores
样品编号 深度/m 样品类型 总孔隙率/% 水占孔隙率/% 含水饱和度/% 含气饱和度/% 23 2278.15~2278.40 柱样 5.73 3.90 68.14 31.86 25 2278.66~2278.95 柱样 5.50 2.20 40.02 59.98 27 2279.04~2279.29 柱样 5.72 3.92 68.50 31.50 29 2279.44~2279.68 柱样 4.14 3.78 61.26 38.74 表 5 深层煤层气“地质−工程”甜点区划分指标
Table 5 Classification index of deep CBM “geological-engineering” sweet spots
地质甜点区 工程甜点区 指标 Ⅰ类 Ⅱ类 指标 Ⅰ类 Ⅱ类 构造 构造平缓带,
地层倾角小于3°构造陡坡带,
地层倾角3°~8°顶板岩性 泥岩+薄灰岩 厚灰岩 煤层厚度/m >6 >6 底板岩性 脆性指数小于30的
泥岩、灰岩脆性指数大于30的泥岩、
砂质泥岩、砂岩埋深/m >2000 1500~2000 顶板隔层应力差/MPa >6 <6 含气量/(m3·t−1) >16 <16 底板隔层应力差/MPa >6 <6 气测峰值/% >80 <80 可压性(煤体强度、
裂隙发育程度)割理裂隙发育 割理裂隙发育差 录井显示 槽面有气泡
液面
上涨2 cm以上槽面有气泡
液面
上涨小于2 cm可改造性(煤储层
矿物质种类及含量)填充物溶蚀率高 不含填充物或填充物溶蚀率低 -
[1] 徐凤银,肖芝华,陈东,等. 我国煤层气开发技术现状与发展方向[J]. 煤炭科学技术,2019,47(10):205−215.. doi: 10.13199/j.cnki.cst.2019.10.027XU Fengyin,XIAO Zhihua,CHEN Dong,et al. Current status and development direction of coalbed methane exploration technology in China[J]. Coal Science and Technology,2019,47(10):205−215.. doi: 10.13199/j.cnki.cst.2019.10.027 [2] 孙钦平,赵群,姜馨淳,等. 新形势下中国煤层气勘探开发前景与对策思考[J]. 煤炭学报,2021,46(1):65−76.. doi: 10.13225/j.cnki.jccs.2020.1579SUN Qinping,ZHAO Qun,JIANG Xinchun,et al. Prospects and strategies of CBM exploration and development in China under the new situation[J]. Journal of China Coal Society,2021,46(1):65−76.. doi: 10.13225/j.cnki.jccs.2020.1579 [3] HOU Xiaowei,LIU Shimin,ZHU Yanming,et al. Evaluation of gas contents for a multi–seam deep coalbed methane reservoir and their geological controls:In situ direct method versus indirect method[J]. Fuel,2020,265:116917.. doi: 10.1016/j.fuel.2019.116917 [4] 门相勇,韩征,宫厚健,等. 新形势下中国煤层气勘探开发面临的挑战与机遇[J]. 天然气工业,2018,38(9):10−16.. doi: 10.3787/j.issn.1000-0976.2018.09.002MEN Xiangyong,HAN Zheng,GONG Houjian,et al. Challenges and opportunities of CBM exploration and development in China under new situations[J]. Natural Gas Industry,2018,38(9):10−16.. doi: 10.3787/j.issn.1000-0976.2018.09.002 [5] 陈刚,秦勇,李五忠,等. 鄂尔多斯盆地东部深层煤层气成藏地质条件分析[J]. 高校地质学报,2012,18(3):465−473.. doi: 10.16108/j.issn1006-7493.2012.03.019CHEN Gang,QIN Yong,LI Wuzhong,et al. Analysis of geological conditions of deep coalbed methane reservoiring in the eastern Ordos Basin[J]. Geological Journal of China Universities,2012,18(3):465−473.. doi: 10.16108/j.issn1006-7493.2012.03.019 [6] LI Song,TANG Dazhen,PAN Zhejun,et al. Geological conditions of deep coalbed methane in the eastern margin of the Ordos Basin,China:Implications for coalbed methane development[J]. Journal of Natural Gas Science and Engineering,2018,53:394−402.. doi: 10.1016/j.jngse.2018.03.016 [7] 孙钦平,王生维. 大宁–吉县煤区含煤岩系沉积环境分析及其对煤层气开发的意义[J]. 天然气地球科学,2006,17(6):874−879.. doi: 10.3969/j.issn.1672-1926.2006.06.030SUN Qinping,WANG Shengwei. The deposit environment analysis of the coal–bearing strata and its significance to the coalbed methane development in Daning–Jixian region[J]. Natural Gas Geoscience,2006,17(6):874−879.. doi: 10.3969/j.issn.1672-1926.2006.06.030 [8] 陈瑞银,罗晓容,陈占坤,等. 鄂尔多斯盆地埋藏演化史恢复[J]. 石油学报,2006,27(2):43−47.. doi: 10.3321/j.issn:0253-2697.2006.02.009CHEN Ruiyin,LUO Xiaorong,CHEN Zhankun,et al. Restoration of burial history of four periods in Ordos Basin[J]. Acta Petrolei Sinica,2006,27(2):43−47.. doi: 10.3321/j.issn:0253-2697.2006.02.009 [9] 于强,任战利,曹红霞. 鄂尔多斯盆地延长探区下古生界热演化史[J]. 兰州大学学报(自然科学版),2011,47(5):24−29.. doi: 10.13885/j.issn.0455-2059.2011.05.019YU Qiang,REN Zhanli,CAO Hongxia. Thermal evolution history of the Lower Paleozoic in Yanchang exploratory area of Ordos Basin[J]. Journal of Lanzhou University(Natural Sciences),2011,47(5):24−29.. doi: 10.13885/j.issn.0455-2059.2011.05.019 [10] 丁超. 鄂尔多斯盆地东北部热演化史与天然气成藏期次研究[D]. 西安: 西北大学, 2010.DING Chao. Thermal evolution and petroleum–charging times in the northeast area of Ordos Basin[D]. Xi’an: Northwest University, 2010. [11] 马行陟,宋岩,柳少波,等. 中高煤阶煤储层吸附能力演化历史定量恢复:以鄂尔多斯盆地韩城地区为例[J]. 石油学报,2014,35(6):1080−1086.. doi: 10.7623/syxb201406005MA Xingzhi,SONG Yan,LIU Shaobo,et al. Quantitative research on adsorption capacity evolution of middle–high rank coal reservoirs in geological history:A case study from Hancheng area in Ordos Basin[J]. Acta Petrolei Sinica,2014,35(6):1080−1086.. doi: 10.7623/syxb201406005 [12] 任战利,祁凯,刘润川,等. 鄂尔多斯盆地早白垩世构造热事件形成动力学背景及其对油气等多种矿产成藏(矿)期的控制作用[J]. 岩石学报,2020,36(4):1213−1234.. doi: 10.18654/2095-8927/015REN Zhanli,QI Kai,LIU Runchuan,et al. Dynamic background of Early Cretaceous tectonic thermal events and its control on various mineral accumulations such as oil and gas in the Ordos Basin[J]. Acta Petrologica Sinica,2020,36(4):1213−1234.. doi: 10.18654/2095-8927/015 [13] 夏大平,王振,马俊强. 煤层气与页岩气吸附差异性分析[J]. 煤田地质与勘探,2015,43(6):36−38.. doi: 10.3969/j.issn.1001-1986.2015.06.007XIA Daping,WANG Zhen,MA Junqiang. Analyses on the adsorption difference between coalbed methane and shale gas[J]. Coal Geology & Exploration,2015,43(6):36−38.. doi: 10.3969/j.issn.1001-1986.2015.06.007 [14] 张庆玲. 页岩容量法等温吸附实验中异常现象分析[J]. 煤田地质与勘探,2015,43(5):31−33.. doi: 10.3969/j.issn.1001-1986.2015.05.008ZHANG Qingling. The analysis of abnormal phenomena in shale isothermal absorption volumetry test[J]. Coal Geology & Exploration,2015,43(5):31−33.. doi: 10.3969/j.issn.1001-1986.2015.05.008 [15] 韩思杰,桑树勋,梁晶晶. 沁水盆地南部中高阶煤高压甲烷吸附行为[J]. 煤田地质与勘探,2018,46(5):10−18.. doi: 10.3969/j.issn.1001-1986.2018.05.002HAN Sijie,SANG Shuxun,LIANG Jingjing. High pressure methane adsorption of medium and high–rank coal in southern Qinshui Basin[J]. Coal Geology & Exploration,2018,46(5):10−18.. doi: 10.3969/j.issn.1001-1986.2018.05.002 [16] 孙少华,李小明,龚革联,等. 鄂尔多斯盆地构造热事件研究[J]. 科学通报,1997,42(3):306−309.. doi: 10.1360/csb1997-42-3-306SUN Shaohua,LI Xiaoming,GONG Gelian,et al. Study on tectonic thermal events in Ordos Basin[J]. Chinese Science Bulletin,1997,42(3):306−309.. doi: 10.1360/csb1997-42-3-306 [17] 宋岩,柳少波,马行陟,等. 中高煤阶煤层气富集高产区形成模式与地质评价方法[J]. 地学前缘,2016,23(3):1−9.. doi: 10.13745/j.esf.2016.03.001SONG Yan,LIU Shaobo,MA Xingzhi,et al. Research on formation model and geological evaluation method of the middle to high coal rank coalbed methane enrichment and high production area[J]. Earth Science Frontiers,2016,23(3):1−9.. doi: 10.13745/j.esf.2016.03.001 [18] 王玫珠,王勃,孙粉锦,等. 沁水盆地煤层气富集高产区定量评价[J]. 天然气地球科学,2017,28(7):1108−1114.WANG Meizhu,WANG Bo,SUN Fenjin,et al. Quantitative evaluation of CBM enrichment and high yield of Qinshui Basin[J]. Natural Gas Geoscience,2017,28(7):1108−1114. [19] 王勃,姚红星,王红娜,等. 沁水盆地成庄区块煤层气成藏优势及富集高产主控地质因素[J]. 石油与天然气地质,2018,39(2):366−372.. doi: 10.11743/ogg20180215WANG Bo,YAO Hongxing,WANG Hongna,et al. Favorable and major geological controlling factors for coalbed methane accumulation and high production in the Chengzhuang block,Qinshui Baisn[J]. Oil & Gas Geology,2018,39(2):366−372.. doi: 10.11743/ogg20180215 [20] 孙粉锦,王勃,李梦溪,等. 沁水盆地南部煤层气富集高产主控地质因素[J]. 石油学报,2014,35(6):1070−1079.. doi: 10.7623/syxb201406004SUN Fenjin,WANG Bo,LI Mengxi,et al. Major geological factors controlling the enrichment and high yield of coalbed methane in the southern Qinshui Basin[J]. Acta Petrolei Sinica,2014,35(6):1070−1079.. doi: 10.7623/syxb201406004 -