留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沁水盆地南部煤层气直井合层排采产气效果数值模拟

刘世奇 方辉煌 桑树勋 胡秋嘉 段卫英 贾慧敏 毛崇昊

刘世奇,方辉煌,桑树勋,等. 沁水盆地南部煤层气直井合层排采产气效果数值模拟[J]. 煤田地质与勘探,2022,50(6):20−31. doi: 10.12363/issn.1001-1986.22.01.0008
引用本文: 刘世奇,方辉煌,桑树勋,等. 沁水盆地南部煤层气直井合层排采产气效果数值模拟[J]. 煤田地质与勘探,2022,50(6):20−31. doi: 10.12363/issn.1001-1986.22.01.0008
LIU Shiqi,FANG Huihuang,SANG Shuxun,et al. Numerical simulation of gas production for multilayer drainage coalbed methane vertical wells in southern Qinshui Basin[J]. Coal Geology & Exploration,2022,50(6):20−31. doi: 10.12363/issn.1001-1986.22.01.0008
Citation: LIU Shiqi,FANG Huihuang,SANG Shuxun,et al. Numerical simulation of gas production for multilayer drainage coalbed methane vertical wells in southern Qinshui Basin[J]. Coal Geology & Exploration,2022,50(6):20−31. doi: 10.12363/issn.1001-1986.22.01.0008

沁水盆地南部煤层气直井合层排采产气效果数值模拟

doi: 10.12363/issn.1001-1986.22.01.0008
基金项目: 国家自然科学基金项目(41972168,42030810)
详细信息
    第一作者:

    刘世奇,1984年生,男,山东单县人,博士,研究员,博士生导师,从事煤系非常规天然气勘探开发、二氧化碳地质封存等领域的研究工作. E-mail:liushiqi@cumt.edu.cn

  • 中图分类号: P618.13

Numerical simulation of gas production for multilayer drainage coalbed methane vertical wells in southern Qinshui Basin

  • 摘要: 随着煤层气勘探开发的深入,多煤层合层排采受到广泛关注。合层排采管控工艺是确保煤层气合采井高产稳产的关键,而多煤层组合条件下复杂的地质条件增加了合层排采管控的难度。数值模拟技术是研究煤层气井合层排采管控工艺的有效手段,科学、可靠的模拟结果可为合采井排采管控提供依据。考虑温度效应、煤基质收缩效应、有效应力作用对煤层流体运移规律以及渗透率等煤层物性参数的影响,建立煤层气直井合层排采生产动态过程多物理场耦合数学模型,并进行有限元法的多物理场耦合求解。通过对沁水盆地南部郑庄区块煤层气合采井组的模拟,探讨不同排采速率下煤层气直井合层排采产气效果及渗透率等煤层物性参数动态演化特征,提出煤层气直井合层排采工程建议。模拟结果显示,郑庄区块3号、15号煤层整体含气量较高,煤层气合采井组具有较大增产潜力,提高排采速率对提高煤层气采收率的效果不显著;排采过程中,煤基质收缩效应对渗透率的影响强于有效应力作用,是提高煤层气井排采速率的保障,在确保排采速率不超过煤层渗流能力上限的基础上,适当提高排采速率可实现煤层气井增产。基于模拟结果,建议排采速率的调整以控制动液面或液柱压力为主;以3号、15号煤层气合采井增产为目标,产水阶段和憋压阶段,郑庄区块煤层气直井合层排采速率以液柱压力降幅0.12~0.20 MPa/d或动液面降幅12~20 m/d为宜,既可实现煤层气增产,又可避免储层伤害。

     

  • 图  模拟井组煤层气井分布与网格划分

    Fig. 1  CBM well distribution and pattern of simulation well group

    图  模拟井组日产气量拟合结果

    Fig. 2  History fitting results of daily gas production of simulation well group

    图  不同排采制度下模拟井组煤层气采收率

    Fig. 3  CBM recovery of simulation well group under different production systems

    图  不同排采制度下模拟井组煤层压力

    Fig. 4  Coal seam pressure of simulation well group under different production systems

    图  不同排采制度下模拟井组煤层含气量

    Fig. 5  CBM content of simulation well group under different production systems

    图  不同排采制度下模拟井组煤层渗透率

    k0为初始渗透率;k为不同时间的渗透率

    Fig. 6  Coal seam permeability of simulation well group under different production systems

    表  1  数值模拟关键参数[24]

    Table  1  Key parameters for numerical simulation[24]

    参数数值
    3号煤层15号煤层
    煤层平均厚度/m6.005.00
    煤层初始压力/MPa6.007.00
    煤层初始温度/K300303
    基质孔隙率/%4.004.50
    裂隙孔隙率/%1.001.50
    裂隙渗透率/10−3 μm20.5140.754
    煤的弹性模量/GPa0.7131.414
    煤泊松比0.2400.250
    基质弹性模量/GPa8.4710.32
    裂缝刚度/(GPa·m−1)2.802.85
    基质热膨胀系数/K−12.4×10−52.4×10−5
    Langmuir压力pL/MPa2.072.07
    Langmuir体积VL/(m3·kg−1)0.025 60.025 6
    CH4温度系数/K−10.0210.025
    CH4压力系数/MPa−10.0710.075
    克林肯伯格因子/MPa0.760.74
    CH4吸附热/(kJ·mol−1)33.433.4
    水相温度系数/[kg·(m3·K)−1]0.022 80.022 8
    下载: 导出CSV

    表  2  数值模拟方案与初始条件、边界条件

    Table  2  Numerical simulation cases, initial conditions, and boundary conditions

    步骤模拟内容时间/d初始条件边界条件
    第1阶段历史拟合实际井底流压降幅220煤层初始压力 实际煤层气井井底流压;
    其他边界均为恒压边界
    第2阶段不同排采制度下煤层
    气井生产效果模拟
    实际动液面降幅,
    2、5、7倍实
    际动液面降幅
    1 800煤层初始压力为排采
    220 d后的煤层压力
    实际动液面降幅为“基准”、
    “基准”降幅的2、5、7倍;
    其他边界均为恒压边界
    下载: 导出CSV

    表  3  排采各阶段动液面降幅模拟参数

    Table  3  Simulative hydraulic pressure drop in different production stages

    模拟方案基准动液面降幅
    排水阶段动液面降幅倍数1257
    液柱压力降幅/(MPa·d−1)0.040.080.200.28
    动液面降幅/(m·d−1)4.088.1620.4128.56
    结束时液柱压力/MPapadspadspadspads
    憋压阶段持续时间/d60606060
    液柱压力降幅/(MPa·d−1)0.040.080.200.28
    动液面降幅/(m·d−1)4.088.1620.4128.56
    结束时液柱压力/MPa0.200.200.200.20
    套压降幅/(MPa·d−1)0.040.040.040.04
    结束时套压/MPa2.402.402.402.40
    产气阶段持续时间/d236236236236
    结束时液柱压力/MPa0.010.010.010.01
    套压降幅/(MPa·d−1)0.010.010.010.01
    结束时套压/MPa0.040.040.040.04
    结束时液柱压力/MPa0.010.010.010.01
    套压/MPa0.040.040.040.04
    注:产气阶段包含控压产气阶段、稳产阶段和产气量衰减阶段;pads为临界解吸压力。
    下载: 导出CSV

    表  4  模拟井组日产气量平均历史拟合误差

    Table  4  Average history fitting error statistics of daily gas production of simulation well group

    井号No.1No.2No.3No.4No.5No.6
    误差/%0.661.591.883.823.071.72
    井号No.7No.8No.9No.10No.11No.12
    误差/%12.431.601.311.014.072.23
    下载: 导出CSV

    表  5  模拟井组预测累计产气量增幅

    Table  5  Prediction of cumulative gas production increase of simulation well group

    井号累计产气量增幅/%
    2倍动液面降幅5倍动液面降幅7倍动液面降幅
    3+15号煤层3号煤层15号煤层3+15号煤层3号煤层15号煤层3+15号煤层3号煤层15号煤层
    No.112.0913.0610.8032.2232.0832.4152.5153.7450.88
    No.29.0410.067.6821.5221.3821.7033.4334.6131.86
    No.312.4213.2911.2433.8833.7634.0555.6556.7654.15
    No.48.939.917.6221.3621.2321.5333.1834.3131.67
    No.56.317.305.0213.4113.2713.5820.2021.2318.84
    No.623.9724.9222.6762.1161.9562.3362.6363.7661.09
    No.77.138.055.8315.8315.7016.0024.1025.1022.71
    No.86.087.054.8212.8112.6912.9719.2420.2617.93
    No.98.809.757.5021.0120.8721.1932.6233.7031.15
    No.1013.2714.2311.9636.5036.3736.6760.7061.9758.97
    No.117.638.506.4217.6717.5717.8127.0427.9825.72
    No.121.211.960.130.170.060.330.541.21-0.43
    下载: 导出CSV
  • [1] QIN Yong,MOORE T A,SHEN Jian,et al. Resources and geology of coalbed methane in China:A review[J]. International Geology Review,2018,60(5/6):777−812.
    [2] 吴建光. 沁南地区煤层气生产潜力研究[J]. 中国煤田地质,2003,15(1):27−28. WU Jianguang. Research on productive potentiality of coalbed gas in region of southern Qinshui Basin[J]. Coal Geology of China,2003,15(1):27−28.

    WU Jianguang. Research on productive potentiality of coalbed gas in region of southern Qinshui Basin[J]. Coal Geology of China, 2003, 15(1): 27–28.
    [3] KANG Junqiang,FU Xuehai,GAO Lin,et al. Production profile characteristics of large dip angle coal reservoir and its impact on coalbed methane production:A case study on the Fukang west block,southern Junggar Basin,China[J]. Journal of Petroleum Science and Engineering,2018,171:99−114.. doi: 10.1016/j.petrol.2018.07.044
    [4] 魏迎春,张傲翔,姚征,等. 韩城区块煤层气排采中煤粉产出规律研究[J]. 煤炭科学技术,2014,42(2):85−89. WEI Yingchun,ZHANG Aoxiang,YAO Zheng,et al. Research on output laws of pulverized coal during coalbed methane drainage in Hancheng block[J]. Coal Science and Technology,2014,42(2):85−89.

    WEI Yingchun, ZHANG Aoxiang, YAO Zheng, et al. Research on output laws of pulverized coal during coalbed methane drainage in Hancheng block[J]. Coal Science and Technology, 2014, 42(2): 85–89.
    [5] REN Jianhua,ZHANG Liang,REN Shaoran,et al. Multi–branched horizontal wells for coalbed methane production:Field performance and well structure analysis[J]. International Journal of Coal Geology,2014,131:52−64.. doi: 10.1016/j.coal.2014.06.003
    [6] CHEN Shida,TANG Dazhen,TAO Shu,et al. Current status and key factors for coalbed methane development with multibranched horizontal wells in the southern Qinshui Basin of China[J]. Energy Science & Engineering,2019,7(5):1572−1587.
    [7] 易同生,周效志,金军. 黔西松河井田龙潭煤系煤层气–致密气成藏特征及共探共采技术[J]. 煤炭学报,2016,41(1):212−220. YI Tongsheng,ZHOU Xiaozhi,JIN Jun. Reservoir formation characteristics and co−exploration and concurrent production technology of Longtan coal measure coalbed methane and tight gas in Songhe field,western Guizhou[J]. Journal of China Coal Society,2016,41(1):212−220.

    YI Tongsheng, ZHOU Xiaozhi, JIN Jun. Reservoir formation characteristics and co–exploration and concurrent production technology of Longtan coal measure coalbed methane and tight gas in Songhe field, western Guizhou[J]. Journal of China Coal Society, 2016, 41(1): 212–220.
    [8] 黄华州,桑树勋,苗耀,等. 煤层气井合层排采控制方法[J]. 煤炭学报,2014,39(增刊2):422−431. HUANG Huazhou,SANG Shuxun,MIAO Yao,et al. Drainage control of single vertical well with multi−hydraulic fracturing layers for coalbed methane development[J]. Journal of China Coal Society,2014,39(Sup.2):422−431.

    HUANG Huazhou, SANG Shuxun, MIAO Yao, et al. Drainage control of single vertical well with multi–hydraulic fracturing layers for coalbed methane development[J]. Journal of China Coal Society, 2014, 39(Sup. 2): 422–431.
    [9] 周效志,桑树勋,易同生,等. 煤层气合层开发上部产层暴露的伤害机理[J]. 天然气工业,2016,36(6):52−59. ZHOU Xiaozhi,SANG Shuxun,YI Tongsheng,et al. Damage mechanism of upper exposed producing layers during CBM multi−coal seam development[J]. Natural Gas Industry,2016,36(6):52−59.. doi: 10.3787/j.issn.1000-0976.2016.06.008

    ZHOU Xiaozhi, SANG Shuxun, YI Tongsheng, et al. Damage mechanism of upper exposed producing layers during CBM multi–coal seam development[J]. Natural Gas Industry, 2016, 36(6): 52–59.. doi: 10.3787/j.issn.1000-0976.2016.06.008
    [10] 刘江,桑树勋,周效志,等. 六盘水地区煤层气井合层排采实践与认识[J]. 煤田地质与勘探,2020,48(3):93−99. LIU Jiang,SANG Shuxun,ZHOU Xiaozhi,et al. Practice and understanding of multi−layer drainage of CBM wells in Liupanshui area[J]. Coal Geology & Exploration,2020,48(3):93−99.. doi: 10.3969/j.issn.1001-1986.2020.03.014

    LIU Jiang, SANG Shuxun, ZHOU Xiaozhi, et al. Practice and understanding of multi−layer drainage of CBM wells in Liupanshui area[J]. Coal Geology & Exploration, 2020, 48(3): 93–99.. doi: 10.3969/j.issn.1001-1986.2020.03.014
    [11] 姜杉钰,康永尚,杨通保,等. 云南恩洪煤层气区块单井多煤层合采方式探讨[J]. 煤田地质与勘探,2018,46(2):80−89. JIANG Shanyu,KANG Yongshang,YANG Tongbao,et al. Combined CBM drainage of multiple seams by single well in Enhong block,Yunnan Province[J]. Coal Geology & Exploration,2018,46(2):80−89.. doi: 10.3969/j.issn.1001-1986.2018.02.013

    JIANG Shanyu, KANG Yongshang, YANG Tongbao, et al. Combined CBM drainage of multiple seams by single well in Enhong block, Yunnan Province[J]. Coal Geology & Exploration, 2018, 46(2): 80–89.. doi: 10.3969/j.issn.1001-1986.2018.02.013
    [12] 秦勇,张政,白建平,等. 沁水盆地南部煤层气井产出水源解析及合层排采可行性判识[J]. 煤炭学报,2014,39(9):1892−1898. QIN Yong,ZHANG Zheng,BAI Jianping,et al. Source apportionment of produced−water and feasibility discrimination of commingling CBM production from wells in southern Qinshui Basin[J]. Journal of China Coal Society,2014,39(9):1892−1898.

    QIN Yong, ZHANG Zheng, BAI Jianping, et al. Source apportionment of produced–water and feasibility discrimination of commingling CBM production from wells in southern Qinshui Basin[J]. Journal of China Coal Society, 2014, 39(9): 1892–1898.
    [13] 杨建超,李贵红,刘钰辉,等. 晋城地区煤层气井多层合采效果评价[J]. 煤田地质与勘探,2019,47(6):26−31. YANG Jianchao,LI Guihong,LIU Yuhui,et al. Evaluation of coalbed methane drainage effect for multi−target seams in Jincheng region[J]. Coal Geology & Exploration,2019,47(6):26−31.

    YANG Jianchao, LI Guihong, LIU Yuhui, et al. Evaluation of coalbed methane drainage effect for multi–target seams in Jincheng region[J]. Coal Geology & Exploration, 2019, 47(6): 26–31.
    [14] 孟尚志. 煤层气单支U型水平井合采多层技术研究: 以柳林示范区为例[D]. 北京: 中国地质大学(北京), 2014.

    MENG Shangzhi. The technology design for single U–type horizontal well exploiting coalbed methane adjacent formation in Liulin[D]. Beijing: China University of Geosciences (Beijing), 2014.
    [15] WANG Ziwei,QIN Yong. Physical experiments of CBM coproduction:A case study in Laochang district,Yunnan Province,China[J]. Fuel,2019,239:964−981.. doi: 10.1016/j.fuel.2018.11.082
    [16] WU Caifang,ZHANG Xiaoyang,WANG Meng,et al. Physical simulation study on the hydraulic fracture propagation of coalbed methane well[J]. Journal of Applied Geophysics,2018,150:244−253.. doi: 10.1016/j.jappgeo.2018.01.030
    [17] 李鑫,傅雪海. 不同层间距条件下煤层气井递进排采气、水产能研究[J]. 煤炭技术,2015,34(10):44−47. LI Xin,FU Xuehai. Research on gas and water capacity of CBM well during process of progressive drainage with different coal seam interval[J]. Coal Technology,2015,34(10):44−47.

    LI Xin, FU Xuehai. Research on gas and water capacity of CBM well during process of progressive drainage with different coal seam interval[J]. Coal Technology, 2015, 34(10): 44–47.
    [18] 姚帅,吴财芳,李腾. 潘庄区块煤层气井层间干扰数值模拟研究[J]. 煤炭工程,2014,46(3):80−83. YAO Shuai,WU Caifang,LI Teng. Study on numerical simulation of interferences between stratum interfaces of coal bed methane well in Panzhuang block[J]. Coal Engineering,2014,46(3):80−83.. doi: 10.11799/ce201403025

    YAO Shuai, WU Caifang, LI Teng. Study on numerical simulation of interferences between stratum interfaces of coal bed methane well in Panzhuang block[J]. Coal Engineering, 2014, 46(3): 80–83.. doi: 10.11799/ce201403025
    [19] 张二超,吴财芳,党广兴,等. 滇东老厂区块多煤层煤层气合采层间干扰分析[J]. 河南理工大学学报(自然科学版),2020,39(1):10−17. ZHANG Erchao,WU Caifang,DANG Guangxing,et al. Interlayer interference analysis of the multi–layer drainage for multiple seams CBM in Laochang mining area of eastern Yunnan Province[J]. Journal of Henan Polytechnic University(Natural Science),2020,39(1):10−17.

    ZHANG Erchao, WU Caifang, DANG Guangxing, et al. Interlayer interference analysis of the multi–layer drainage for multiple seams CBM in Laochang mining area of eastern Yunnan Province[J]. Journal of Henan Polytechnic University(Natural Science), 2020, 39(1): 10–17.
    [20] 王成. 铜川焦坪矿区煤层气储层数值模拟与排采制度研究[J]. 中国煤炭地质,2013,25(4):18−22. WANG Cheng. A study on CBM reservoir numerical simulation and drainage system in Jiaoping mining area,Tongchuan[J]. Coal Geology of China,2013,25(4):18−22.. doi: 10.3969/j.issn.1674-1803.2013.04.05

    WANG Cheng. A study on CBM reservoir numerical simulation and drainage system in Jiaoping mining area, Tongchuan[J]. Coal Geology of China, 2013, 25(4): 18–22.. doi: 10.3969/j.issn.1674-1803.2013.04.05
    [21] 吴艳婷. 多煤层区煤层气合层开发产能及经济性研究[D]. 北京: 中国矿业大学(北京), 2018.

    WU Yanting. Research on well productivity and economic feasibility of commingled coalbed methane production in multi–seam zone[D]. Beijing: China University of Mining and Technology(Beijing), 2018.
    [22] 张政. 沁水盆地南部太原组含煤层气系统及其排采优化[D]. 徐州: 中国矿业大学, 2016.

    ZHANG Zheng. Coalbed methane system and drainage optimization of Taiyuan Formation in southern Qinshui Basin[D]. Xuzhou: China University of Mining and Technology, 2016.
    [23] 张先敏,同登科. 考虑基质收缩影响的煤层气流动模型及应用[J]. 中国科学E辑:技术科学,2008,38(5):790−796. ZHANG Xianmin,TONG Dengke. Coalbed methane flow model considering matrix shrinkage and its application[J]. Scientia Sinica:Technologica,2008,38(5):790−796.

    ZHANG Xianmin, TONG Dengke. Coalbed methane flow model considering matrix shrinkage and its application[J]. Scientia Sinica: Technologica, 2008, 38(5): 790–796.
    [24] 张先敏,同登科. 沁水盆地产层组合对煤层气井产能的影响[J]. 煤炭学报,2007,32(3):272−275. ZHANG Xianmin,TONG Dengke. The effects of pay formation combination on productivity of coalbed methane well in Qinshui Basin[J]. Journal of China Coal Society,2007,32(3):272−275.. doi: 10.3321/j.issn:0253-9993.2007.03.011

    ZHANG Xianmin, TONG Dengke. The effects of pay formation combination on productivity of coalbed methane well in Qinshui Basin[J]. Journal of China Coal Society, 2007, 32(3): 272–275.. doi: 10.3321/j.issn:0253-9993.2007.03.011
    [25] HU Qiujia,LIU Shiqi,SANG Shuxun,et al. Numerical analysis of drainage rate for multilayer drainage coalbed methane well group in southern Qinshui Basin[J]. Energy Exploration & Exploitation,2020,38(9):1535−1558.
    [26] 刘世奇,方辉煌,桑树勋,等. 基于多物理场耦合求解的煤层CO2–ECBM数值模拟研究[J]. 煤炭科学技术,2019,47(9):51−59. LIU Shiqi,FANG Huihuang,SANG Shuxun,et al. Numerical simulation study on coal seam CO2–ECBM based on multi–physics fields coupling solution[J]. Coal Science and Technology,2019,47(9):51−59.

    LIU Shiqi, FANG Huihuang, SANG Shuxun, et al. Numerical simulation study on coal seam CO2–ECBM based on multi–physics fields coupling solution[J]. Coal Science and Technology, 2019, 47(9): 51–59.
    [27] LI Sheng,FAN Chaojun,HAN Jun,et al. A fully coupled thermal−hydraulic−mechanical model with two−phase flow for coalbed methane extraction[J]. Journal of Natural Gas Science and Engineering,2016,33:324−336.. doi: 10.1016/j.jngse.2016.05.032
    [28] LIU Shiqi,FANG Huihuang,SANG Shuxun,et al. CO2 injectability and CH4 recovery of the engineering test in Qinshui Basin,China,based on numerical simulation[J]. International Journal of Greenhouse Gas Control,2020,95:102980.. doi: 10.1016/j.ijggc.2020.102980
    [29] ZHAO Junlong,TANG Dazhen,XU Hao,et al. A dynamic prediction model for gas–water effective permeability in unsaturated coalbed methane reservoirs based on production data[J]. Journal of Natural Gas Science and Engineering,2014,21:496−506.. doi: 10.1016/j.jngse.2014.09.014
    [30] FAN Yongpeng,DENG Cunbao,ZHANG Xun,et al. Numerical study of CO2–enhanced coalbed methane recovery[J]. International Journal of Greenhouse Gas Control,2018,76:12−23.. doi: 10.1016/j.ijggc.2018.06.016
    [31] WANG Gang,WANG Ke,JIANG Yujing,et al. Reservoir permeability evolution during the process of CO2–enhanced coalbed methane recovery[J]. Energies,2018,11(11):1−21.
    [32] WANG Gang,WANG Ke,WANG Shugang,et al. An improved permeability evolution model and its application in fractured sorbing media[J]. Journal of Natural Gas Science and Engineering,2018,56:222−232.. doi: 10.1016/j.jngse.2018.05.038
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  455
  • HTML全文浏览量:  10
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-05
  • 修回日期:  2022-02-25
  • 发布日期:  2022-06-25
  • 网络出版日期:  2022-05-30

目录

    /

    返回文章
    返回