留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深部变面长采场顶板破断演化的力学机制分析

王新丰 陆明远

王新丰,陆明远. 深部变面长采场顶板破断演化的力学机制分析[J]. 煤田地质与勘探,2022,50(10):1−15. doi: 10.12363/issn.1001-1986.22.03.0115
引用本文: 王新丰,陆明远. 深部变面长采场顶板破断演化的力学机制分析[J]. 煤田地质与勘探,2022,50(10):1−15. doi: 10.12363/issn.1001-1986.22.03.0115
WANG Xinfeng,LU Mingyuan. Study on mechanical mechanism of roof fracture evolution in deep stope with variable face length[J]. Coal Geology & Exploration,2022,50(10):1−15. doi: 10.12363/issn.1001-1986.22.03.0115
Citation: WANG Xinfeng,LU Mingyuan. Study on mechanical mechanism of roof fracture evolution in deep stope with variable face length[J]. Coal Geology & Exploration,2022,50(10):1−15. doi: 10.12363/issn.1001-1986.22.03.0115

深部变面长采场顶板破断演化的力学机制分析

doi: 10.12363/issn.1001-1986.22.03.0115
基金项目: 国家自然科学基金项目(51904266);湖南省教育厅优秀青年基金项目(21B0144);湖湘高层次人才聚集工程创新团队项目(2019RS1059)
详细信息
    第一作者:

    王新丰,1988年生,男,安徽亳州人,博士(后),副教授,从事矿山压力与岩层控制方面的研究. E-mail:xfw2020@xtu.edu.cn

  • 中图分类号: TD821

Study on mechanical mechanism of roof fracture evolution in deep stope with variable face length

  • 摘要: 不规则煤层开采容易引发顶板应力集中、矿压显现异常等问题,为探究变面长采场顶板破断规律与结构演化特征,针对工作面斜长由小变大的突变型采场不同开采阶段的几何特征与力学成因,运用小挠度薄板弯曲理论依次建立并解析4种边界条件的顶板结构模型。根据变面长采场顶板矿压分区显现特征,采用MATLAB与FLAC3D数值模拟方法分析顶板破断规律与宏观力学响应。通过系统分析与总结归纳,构建了变长工作面“三场三区三结构”的覆岩结构传递演化模式,提出了“两场两规律”的顶板分区破断效应。并通过典型工程案例的矿压实测进行应用验证。结果表明:变面长采场分为小面采场、变面采场和大面采场,小面采场顶板为缓压型结构,发生的是传统“O−X”形破断;变面采场顶板为突变型结构,顶板断裂产生的延长形与漂移形“O−X”破断裂隙与大面采场增压型结构顶板的裂纹发育特征较为相似,故将二者整合为全大面采场;全大面采场顶板发生的是“X−O”形破断,裂纹继续发展产生延长形破断,形成“两场两规律”的顶板破断理论。研究结论为探明变面长采场的覆岩运移本质,加强深部复杂煤层赋存条件下的顶板灾害防控提供了重要依据。

     

  • 图  变面长采场分区模型

    Fig. 1  Zoning model of stope with variable face length

    图  采场分区及顶板力学边界模型

    Fig. 2  Stope zoning and roof mechanical boundary model

    图  三边固支一边简支(简支边为长边)顶板模型弯矩

    Fig. 3  Bending moment of roof model with fixed support on three sides and simplified support on one side (Simplified support is set on the long side)

    图  小面采场“O−X”破断演化过程

    Fig. 4  “O-X” fracture evolution of small-face stope

    图  一边固支三边简支顶板模型弯矩

    Fig. 5  Bending moment of roof model with fixed support on one side and simplified support on three sides

    图  变面采场Ⅰ破断演化过程

    Fig. 6  Fracture evolution of variable-face stope I

    图  接续小面采场的延长形“O−X”破断

    Fig. 7  Extended “O-X” fracture of continuous small-face stope

    图  三边固支一边简支(简支边为短边)顶板模型弯矩

    Fig. 8  Bending moment of roof model with fixed support on three sides and simplified support on one side (The simplified support is set on the short side)

    图  变面采场Ⅱ破断演化过程

    Fig. 9  Fracture evolution of variable-face stope Ⅱ

    图  10  接续小面采场的漂移形“O−X”破断

    Fig. 10  Drift “O-X” fracture of continuous small-face stope

    图  11  两边固支两边简支顶板模型弯矩

    Fig. 11  Bending moment of roof model with fixed support on two sides and simplified support on other two sides

    图  12  大面采场破断演化过程

    Fig. 12  Fracture evolution of large-face stope

    图  13  变面长采场顶板整体破断结构

    Fig. 13  Overall fracturing structure of roof in stope with variable face length

    图  14  全大面采场模型

    Fig. 14  Full-face stope model

    图  15  全大面采场半“X”形破断

    Fig. 15  Half “X” fracture of full-face stope

    图  16  全大面采场“X−C”形破断

    Fig. 16  “X-C” fracture of full face stope

    图  17  全大面采场“X−O”形破断

    Fig. 17  “X-O” fracture of full-face stope

    图  18  延长形“X−O”破断

    Fig. 18  Extended “X-O” fracture

    图  19  数值模型

    Fig. 19  Numerical model

    图  20  小面采场最大剪应力分布

    Fig. 20  Distribution of maximum shear stress in small-face stope

    图  21  小面采场塑性区发育

    Fig. 21  Development of plastic zone in small-face stope

    图  22  变面采场的最大剪应力分布

    Fig. 22  Distribution of maximum shear stress in variable-face stope

    图  23  变面采场塑性区发育

    Fig. 23  Development of plastic zone in variable-face stope

    图  24  大面采场最大剪应力分布

    Fig. 24  Distribution of maximum shear stress in large-face stope

    图  25  大面采场塑性区发育

    Fig. 25  Development of plastic zone in large-face stope

    图  26  “三场三区三结构”覆岩结构演化模型

    Fig. 26  Evolution model of overburden structure of “three stopes, three areas and three structures”

    图  27  “两场两规律”顶板破断模型

    Fig. 27  Roof fracturing model of “two stopes and two laws”

    图  28  液压支架矿压测点布置

    Fig. 28  Layout of ground pressure measuring points on hydraulic support

    图  29  顶板矿压监测应力演化

    Fig. 29  Stress evolution of ground pressure monitoring on roof

    表  1  岩性模拟参数

    Table  1  Simulated lithology parameters

    岩石组别岩石名称厚度/m体积模量/GPa剪切模量/GPa黏聚力/MPa内摩擦角/(°)抗拉强度/MPa
    顶板粉砂岩86.44.85.6403.6
    砂质泥岩73.93.04.2353.2
    细砂岩76.55.34.8323.8
    砂质泥岩54.23.43.9303.1
    地质岩柱泥−页岩33.12.23.5282.2
    煤层30.80.31.8200.3
    底板泥岩52.92.02.7292.4
    中砂岩156.24.56.0424.0
    砂质泥岩304.83.14.3333.2
    下载: 导出CSV
  • [1] 何满潮,谢和平,彭苏萍,等. 深部开采岩体力学研究[J]. 岩石力学与工程学报,2005,24(16):2803−2813.. doi: 10.3321/j.issn:1000-6915.2005.16.001

    HE Manchao,XIE Heping,PENG Suping,et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2803−2813.. doi: 10.3321/j.issn:1000-6915.2005.16.001
    [2] 卢邦稳,刘长武,谢辉,等. 不等长工作面覆岩活动及回采巷道采动影响变形规律[J]. 金属矿山,2016,45(1):34−38.. doi: 10.3969/j.issn.1001-1250.2016.01.008

    LU Bangwen,LIU Changwu,XIE Hui,et al. Law of overburden strata movement and mining roadway deformation under mining influence in the unequal length of working face[J]. Metal Mine,2016,45(1):34−38.. doi: 10.3969/j.issn.1001-1250.2016.01.008
    [3] 李杨杨,张士川,高立群,等. 不等长工作面台阶区域覆岩运动诱冲机制及防治[J]. 岩土力学,2016,37(11):3283−3290.

    LI Yangyang,ZHANG Shichuan,GAO Liqun,et al. Mechanism and prevention of pressure burst in step region based on overburden strata movement of unequal length working face[J]. Rock and Soil Mechanics,2016,37(11):3283−3290.
    [4] 王新丰. “刀把式”采场顶板破断机理及力学演化特征的面长效应研究[D]. 淮南: 安徽理工大学, 2015.

    WANG Xinfeng. Slope length effect of roof fracture mechanism and stress distribution characteristics of irregular stope[D]. Huainan: Anhui University of Science and Technology, 2015.
    [5] NING Jianguo,WANG Jun,TAN Yunliang,et al. Mechanical mechanism of overlying strata breaking and development of fractured zone during close–distance coal seam group mining[J]. International Journal of Mining Science and Technology,2020,30:207−215.. doi: 10.1016/j.ijmst.2019.03.001
    [6] 刘一扬,宋选民,朱德福,等. 大块度关键块动态结构力学行为及响应特征研究[J]. 岩土力学,2020,41(3):1019−1028.

    LIU Yiyang,SONG Xuanmin,ZHU Defu,et al. Dynamic structural mechanical behavior and response characteristics of large key blocks[J]. Rock and Soil Mechanics,2020,41(3):1019−1028.
    [7] 崔峰,贾冲,来兴平,等. 近距离强冲击倾向性煤层上行开采覆岩结构演化特征及其稳定性研究[J]. 岩石力学与工程学报,2020,39(3):507−521.

    CUI Feng,JIA Chong,LAI Xingping,et al. Study on the evolution characteristics and stability of overburden structure in upward mining of short distance coal seams with strong burst tendency[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(3):507−521.
    [8] 王红胜,李树刚,张新志,等. 沿空巷道基本顶断裂结构影响窄煤柱稳定性分析[J]. 煤炭科学技术,2014,42(2):19−22.. doi: 10.13199/j.cnki.cst.2014.02.006

    WANG Hongsheng,LI Shugang,ZHANG Xinzhi,et al. Analysis on stability of narrow coal pillar influenced by main roof fracture structure of gob–side roadway[J]. Coal Science and Technology,2014,42(2):19−22.. doi: 10.13199/j.cnki.cst.2014.02.006
    [9] WANG Xinfeng,LU Mingyuan,GAO Yuhao,et al. Structural mechanical characteristics and instability law of roof key block breaking in gob–side roadway[J]. Advances in Civil Engineering,2020:1−12.
    [10] 姜福兴. 采场覆岩空间结构观点及其应用研究[J]. 采矿与安全工程学报,2006,23(1):30−33.. doi: 10.3969/j.issn.1673-3363.2006.01.006

    JIANG Fuxing. Viewpoint of spatial structures of overlying strata and its application in coal mine[J]. Journal of Mining & Safety Engineering,2006,23(1):30−33.. doi: 10.3969/j.issn.1673-3363.2006.01.006
    [11] 薛熠,滕腾,王希贺,等. 采场顶板破断模型及垮落规律分析[J]. 科学技术与工程,2016,16(7):156−161.. doi: 10.3969/j.issn.1671-1815.2016.07.024

    XUE Yi,TENG Teng,WANG Xihe,et al. Analysis of fracturing model and caving law of stope roof[J]. Science Technology and Engineering,2016,16(7):156−161.. doi: 10.3969/j.issn.1671-1815.2016.07.024
    [12] 于辉. 近距离煤层开采覆岩结构运动及矿压显现规律研究[D]. 北京: 中国矿业大学(北京), 2015.

    YU Hui. Study on the movement of upper strata and the pressure behavior law of close distance coal seams[D]. Beijing: China University of Mining and Technology (Beijing), 2015.
    [13] 王新丰,高明中,陈雨雪,等. 基于弹性薄板理论的采场顶板破断特征分析[J]. 金属矿山,2015,44(6):24−28.. doi: 10.3969/j.issn.1001-1250.2015.06.006

    WANG Xinfeng,GAO Mingzhong,CHEN Yuxue,et al. Analysis of fracturing characteristics of stope roof based on elastic thin plate theory[J]. Metal Mine,2015,44(6):24−28.. doi: 10.3969/j.issn.1001-1250.2015.06.006
    [14] 王红卫,陈忠辉,杜泽超,等. 弹性薄板理论在地下采场顶板变化规律研究中的应用[J]. 岩石力学与工程学报,2006,25(增刊2):3769−3774.

    WANG Hongwei,CHEN Zhonghui,DU Zechao,et al. Application of elastic thin plate theory to change rule of roof in underground stope[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(Sup.2):3769−3774.
    [15] FENG Guorui,WANG Pengfei. Stress environment of entry driven along gob–side through numerical simulation incorporating the angle of break[J]. International Journal of Mining Science and Technology,2020,30:189−196.. doi: 10.1016/j.ijmst.2019.03.003
    [16] 杨增强. 复杂地质构造区诱发冲击矿压机理及防控研究[D]. 北京: 中国矿业大学(北京), 2018.

    YANG Zengqiang. Occurrence mechanism of rock burst and its prevention methods under complicated geological conditions[D]. Beijing: China University of Mining and Technology (Beijing), 2018.
    [17] 何富连,何文瑞,陈冬冬,等. 考虑煤体弹–塑性变形的基本顶板初次破断结构特征[J]. 煤炭学报,2020,45(8):2704−2717.

    HE Fulian,HE Wenrui,CHEN Dongdong,et al. First fracture structure characteristics of main roof plate considering elastic–plastic deformation of coal[J]. Journal of China Coal Society,2020,45(8):2704−2717.
    [18] 陈冬冬,何富连,谢生荣,等. 弹性基础边界基本顶板结构周期破断与全区域反弹时空关系[J]. 岩石力学与工程学报,2019,38(6):1172−1187.. doi: 10.13722/j.cnki.jrme.2018.0923

    CHEN Dongdong,HE Fulian,XIE Shengrong,et al. Time–space relationship between periodic fracture of plate structure of main roof and rebound in whole region with elastic foundation boundary[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(6):1172−1187.. doi: 10.13722/j.cnki.jrme.2018.0923
    [19] 陈冬冬,谢生荣,何富连,等. 长边采空(煤柱)弹性基础边界基本顶薄板破断规律[J]. 采矿与安全工程学报,2018,35(6):1191−1199.. doi: 10.13545/j.cnki.jmse.2018.06.015

    CHEN Dongdong,XIE Shengrong,HE Fulian,et al. Fracture rule of main roof thin plate with the elastic foundation boundary and long side coal pillar[J]. Journal of Mining & Safety Engineering,2018,35(6):1191−1199.. doi: 10.13545/j.cnki.jmse.2018.06.015
    [20] 侯朝炯,王襄禹,柏建彪,等. 深部巷道围岩稳定性控制的基本理论与技术研究[J]. 中国矿业大学学报,2021,50(1):1−12.. doi: 10.13247/j.cnki.jcumt.001242

    HOU Chaojiong,WANG Xiangyu,BAI Jianbiao,et al. Basic theory and technology study of stability control for surrounding rock in deep roadway[J]. Journal of China University of Mining & Technology,2021,50(1):1−12.. doi: 10.13247/j.cnki.jcumt.001242
    [21] 徐芝纶. 弹性力学: 下册[M]. 北京: 高等教育出版社, 2016.
    [22] 钱鸣高, 石平五, 许家林. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2010.
  • 加载中
图(29) / 表(1)
计量
  • 文章访问数:  296
  • HTML全文浏览量:  22
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-03
  • 修回日期:  2022-05-08
  • 刊出日期:  2022-10-25
  • 网络出版日期:  2022-09-26

目录

    /

    返回文章
    返回