留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浅埋煤层过沟开采覆岩裂隙与地表裂缝演化规律数值模拟

魏江波 王双明 宋世杰 孙强

魏江波,王双明,宋世杰,等. 浅埋煤层过沟开采覆岩裂隙与地表裂缝演化规律数值模拟[J]. 煤田地质与勘探,2022,50(10):67−75. doi: 10.12363/issn.1001-1986.22.03.0134
引用本文: 魏江波,王双明,宋世杰,等. 浅埋煤层过沟开采覆岩裂隙与地表裂缝演化规律数值模拟[J]. 煤田地质与勘探,2022,50(10):67−75. doi: 10.12363/issn.1001-1986.22.03.0134
WEI Jiangbo,WANG Shuangming,SONG Shijie,et al. Numerical simulation on evolution law of overburden fractures and surface cracks in crossing ditch mining of shallow coal seam[J]. Coal Geology & Exploration,2022,50(10):67−75. doi: 10.12363/issn.1001-1986.22.03.0134
Citation: WEI Jiangbo,WANG Shuangming,SONG Shijie,et al. Numerical simulation on evolution law of overburden fractures and surface cracks in crossing ditch mining of shallow coal seam[J]. Coal Geology & Exploration,2022,50(10):67−75. doi: 10.12363/issn.1001-1986.22.03.0134

浅埋煤层过沟开采覆岩裂隙与地表裂缝演化规律数值模拟

doi: 10.12363/issn.1001-1986.22.03.0134
基金项目: 国家自然科学基金项目(41402308);榆林市科技计划重大项目(6130819001);陕西省煤炭绿色开发地质保障重点实验室重点基金项目(DZBZ2022Z-03)
详细信息
    第一作者:

    魏江波,1991年生,男,陕西长武人,博士研究生,从事矿山地质灾害防治等方面的研究. E-mail:18109071009@stu.xust.edu.cn

    通信作者:

    宋世杰,1983年生,男,山东济南人,博士,副教授,从事矿山地质灾害防治与环境保护方面的教学与科研工作.E-mail:kkkbff@163.com

  • 中图分类号: TD323

Numerical simulation on evolution law of overburden fractures and surface cracks in crossing ditch mining of shallow coal seam

  • 摘要: 浅埋煤层过沟开采在陕北矿区普遍存在,严重威胁着矿井安全生产和生态健康发展。覆岩采动裂隙及地表裂缝的发育是岩体微裂隙的延伸和扩展的结果,为更加系统地研究浅埋煤层过沟开采覆岩微裂隙的演化规律,以陕北安山井田125203工作面为背景,根据现场沟道剖面及钻孔资料,采用Particle Flow Code (PFC)数值模拟平台构建颗粒流数值采煤模型,模拟分析覆岩微裂隙的发育特征、数量变化规律和力链演化特征,揭示微裂隙的发育规律和地表裂缝发育机理。结果表明:浅埋煤层过沟开采过程中,覆岩微裂隙发育表现为“产生–延伸和扩展–聚合成群–贯通成缝”的动态演化过程;根据微裂隙的基本发育特征及分布规律,可将发育全程划分为非连续跳跃式、连续贯通式和横向扩展式3个微裂隙发育阶段;覆岩微裂隙数量随工作面推进距离的增大而增多,非连续跳跃式和连续贯通式发育阶段呈现指数增长特征,分别累计发育微裂隙547和2 867条,覆岩微裂隙逐渐发育至地表;横向扩展式发育阶段呈线性增长特征,累计发育微裂隙11 705条,微裂隙数量随岩层高度的增大而减小;覆岩力链演化过程中,强黏性力链的破坏致使微裂隙发育,局部产生应力集中,强黏性力链拱自下而上逐渐破坏并贯通至地表,导致微裂隙延伸发育至地表形成地裂缝,力链在未贯通岩层的微裂隙两侧和尖端及地表裂缝两侧形成强力链区,微裂隙处形成弱(无)力链区。该研究成果可为陕北矿区浅埋煤层过沟开采覆岩及地表损害防控提供理论指导。

     

  • 图  野外地表裂缝

    Fig. 1  Field surface cracks

    图  125203工作面菜沟段颗粒流数值模型

    Fig. 2  Numerical model of particle flow in Cai ditch section of working face 125203

    图  平行黏结模型本构模型

    Fig. 3  Constitutive model of parallel bond model

    图  工作面推进不同距离时覆岩微裂隙演化规律

    Fig. 4  Evolution law of overburden microfractures at different distance of working face advancing

    图  覆岩裂隙发育3阶段特征

    Fig. 5  Characteristics of three stages of fracture development in overlying strata

    图  覆岩微裂隙发育数量变化曲线

    Fig. 6  Variation curve of overburden microfractures number

    图  不同位置处的微裂隙数量变化

    Fig. 7  Variation in the number of microcracks at different locations

    图  工作面推进不同距离时覆岩力链变化特征

    Fig. 8  Variation characteristics of overburden force chain at different distance of working face advancing

    图  微裂隙与力链特性关系

    Fig. 9  Relationship between micro fracture and force chain characteristics

    表  1  PFC数值模型力学参数

    Table  1  Mesoscopic strength parameters of particles model

    岩性ρ/(kg·m−3)E*/GPac/MPaσc/MPaβμ
    黄土17020.240.170.060.400.40
    风化基岩22006.3012.004.000.300.25
    细粒砂岩278010.0017.106.700.100.55
    泥质粉砂岩27606.7015.905.300.500.50
    煤层14201.007.802.600.400.45
    粉砂岩27607.0016.205.400.200.50
    下载: 导出CSV
  • [1] 王双明, 黄庆享, 范立民, 等. 生态脆弱区煤炭开发与生态水位保护[M]. 北京: 科学出版社, 2010.
    [2] 范立民,马雄德. 浅埋煤层矿井突水溃沙灾害研究进展[J]. 煤炭科学技术,2016,44(1):8−12.. doi: 10.13199/j.cnki.cst.2016.01.002

    FAN Limin,MA Xiongde. Research progress of water inrush hazard in shallow buried coal seam mine[J]. Coal Science and Technology,2016,44(1):8−12.. doi: 10.13199/j.cnki.cst.2016.01.002
    [3] 唐胜利,孟庄涵,徐拴海,等. 薄基岩浅埋煤层开采覆岩移动演化规律分析[J]. 矿业安全与环保,2016,43(6):88−91.. doi: 10.3969/j.issn.1008-4495.2016.06.023

    TANG Shengli,MENG Zhuanghan,XU Shuanhai,et al. Analysis of movement and evolution law of overlying strata of shallow coal seam with thin bedrock[J]. Mining Safety & Environmental Protection,2016,43(6):88−91.. doi: 10.3969/j.issn.1008-4495.2016.06.023
    [4] 侯恩科,冯栋,谢晓深,等. 浅埋煤层沟道采动裂缝发育特征及治理方法[J]. 煤炭学报,2021,46(4):1297−1308.. doi: 10.13225/j.cnki.jccs.2020.0143

    HOU Enke,FENG Dong,XIE Xiaoshen,et al. Development characteristics and treatment methods of mining surface cracks in shallow–buried coal seam gully[J]. Journal of China Coal Society,2021,46(4):1297−1308.. doi: 10.13225/j.cnki.jccs.2020.0143
    [5] 侯恩科,谢晓深,徐友宁,等. 羊场湾煤矿采动地裂缝发育特征及规律研究[J]. 采矿与岩层控制工程学报,2020,2(3):037038.

    HOU Enke,XIE Xiaoshen,XU Youning,et al. Prediction of ground cracks induced by coal mining in Yangchangwan Coal Mine[J]. Journal of Mining and Strata Control Engineering,2020,2(3):037038.
    [6] 车晓阳,侯恩科,孙学阳,等. 沟谷区浅埋煤层覆岩破坏特征及地面裂缝发育规律[J]. 西安科技大学学报,2021,41(1):104−111.. doi: 10.13800/j.cnki.xakjdxxb.2021.0114

    CHE Xiaoyang,HOU Enke,SUN Xueyang,et al. Research on overburden breaking characteristics and ground crack formation mechanism of shallow coal seam under the gully[J]. Journal of Xi’an University of Science and Technology,2021,41(1):104−111.. doi: 10.13800/j.cnki.xakjdxxb.2021.0114
    [7] 黄庆享,曹健,高彬,等. 基于三场演化规律的浅埋近距煤层减损开采研究[J]. 采矿与安全工程学报,2020,37(6):1171−1179.. doi: 10.13545/j.cnki.jmse.2020.06.011

    HUANG Qingxiang,CAO Jian,GAO Bin,et al. Damage–reducing mining based on three fields evolution in shallow buried closely spaced multi–seam[J]. Journal of Mining & Safety Engineering,2020,37(6):1171−1179.. doi: 10.13545/j.cnki.jmse.2020.06.011
    [8] 曹健,黄庆享. 浅埋近距煤层开采覆岩与地表裂缝发育规律及控制[J]. 煤田地质与勘探,2021,49(4):213−220.. doi: 10.3969/j.issn.1001-1986.2021.04.026

    CAO Jian,HUANG Qingxiang. Regularity and control of overburden and surface fractures in shallow−contiguous seams[J]. Coal Geology & Exploration,2021,49(4):213−220.. doi: 10.3969/j.issn.1001-1986.2021.04.026
    [9] 冯洁,王苏健,陈通,等. 生态脆弱矿区土层中导水裂缝带发育高度研究[J]. 煤田地质与勘探,2018,46(1):97−100.. doi: 10.3969/j.issn.1001-1986.2018.01.017

    FENG Jie,WANG Sujian,CHEN Tong,et al. Height of water flowing fractured zone of soil layer in the ecologically fragile mining area[J]. Coal Geology & Exploration,2018,46(1):97−100.. doi: 10.3969/j.issn.1001-1986.2018.01.017
    [10] 王方田,屠世浩,张艳伟,等. 冲沟地貌下浅埋煤层开采矿压规律及顶板控制技术[J]. 采矿与安全工程学报,2015,32(6):877−882.. doi: 10.13545/j.cnki.jmse.2015.06.002

    WANG Fangtian,TU Shihao,ZHANG Yanwei,et al. Ground pressure rules and roof control technology for the longwall mining of shallow seam beneath the gully topography[J]. Journal of Mining & Safety Engineering,2015,32(6):877−882.. doi: 10.13545/j.cnki.jmse.2015.06.002
    [11] CHI Mingbo,ZANG Dongsheng,LIU Honglin,et al. Simulation analysis of water resource damage feature and development degree of mining–induced fracture at ecologically fragile mining area[J]. Environmental Earth Sciences,2019,78:88.. doi: 10.1007/s12665-018-8039-5
    [12] 徐祝贺,李全生,李晓斌,等. 浅埋高强度开采覆岩结构演化及地表损伤研究[J]. 煤炭学报,2020,45(8):2728−2739.. doi: 10.13225/j.cnki.jccs.2020.0917

    XU Zhuhe,LI Quansheng,LI Xiaobin,et al. Structural evolution of overburden and surface damage caused by high–intensity mining with shallow depth[J]. Journal of China Coal Society,2020,45(8):2728−2739.. doi: 10.13225/j.cnki.jccs.2020.0917
    [13] JU Yang,WANG Yongliang,SU Chuanshang,et al. Numerical analysis of the dynamic evolution of mining–induced stresses and fractures in multilayered rock strata using continuum–based discrete element methods[J]. International Journal of Rock Mechanics and Mining Sciences,2019,113:191−210.. doi: 10.1016/j.ijrmms.2018.11.014
    [14] 黄庆享,杜君武,侯恩科,等. 浅埋煤层群覆岩与地表裂隙发育规律和形成机理研究[J]. 采矿与安全工程学报,2019,36(1):7−15.. doi: 10.13545/j.cnki.jmse.2019.01.002

    HUANG Qingxiang,DU Junwu,HOU Enke,et al. Research on overburden and ground surface cracks distribution and formation mechanism in shallow coal seams group mining[J]. Journal of Mining & Safety Engineering,2019,36(1):7−15.. doi: 10.13545/j.cnki.jmse.2019.01.002
    [15] 侯恩科,陈育,车晓阳,等. 浅埋煤层过沟开采覆岩破坏特征及裂隙演化规律研究[J]. 煤炭科学技术,2021,49(10):185−192.. doi: 10.13199/j.cnki.cst.2021.10.025

    HOU Enke,CHEN Yu,CHE Xiaoyang,et al. Study on overburden failure characteristics and fracture evolution law of shallow buried coal seam through trench mining[J]. Coal Science and Technology,2021,49(10):185−192.. doi: 10.13199/j.cnki.cst.2021.10.025
    [16] 李建伟,刘长友,赵杰,等. 沟谷区域浅埋煤层采动矿压发生机理及控制研究[J]. 煤炭科学技术,2018,46(9):104−110.. doi: 10.13199/j.cnki.cst.2018.09.017

    LI Jianwei,LIU Changyou,ZHAO Jie,et al. Study on occurrence mechanism and control technology of mining−induced strata pressure in shallow depth coal seams of valley region[J]. Coal Science and Technology,2018,46(9):104−110.. doi: 10.13199/j.cnki.cst.2018.09.017
    [17] 孙学阳,张慧萱,卢明皎,等. 浅埋煤层过双沟地形开采地表裂缝发育规律[J]. 煤田地质与勘探,2021,49(6):212−220.

    SUN Xueyang,ZHANG Huixuan,LU Mingjiao,et al. The development law of surface cracks in shallow coal seam mining through double gullies terrain[J]. Coal Geology & Exploration,2021,49(6):212−220.
    [18] 侯恩科,从通,谢晓深,等. 基于颗粒流的浅埋双煤层斜交开采地表裂缝发育特征[J]. 采矿与岩层控制工程学报,2020,2(1):013521.

    HOU Enke,CONG Tong,XIE Xiaoshen,et al. Ground surface fracture development characteristics of shallow double coal seam staggered mining based on particle flow[J]. Journal of Mining and Strata Control Engineering,2020,2(1):013521.
    [19] ZHAO Jianjun,WAN Xun,SHI Yanbing,et al. Deformation behavior of mining beneath flat and sloping terrains in mountainous areas[J]. Geofluids,2021(8):1−16.
    [20] 武猛猛,王刚,王锐,等. 浅埋采场上覆岩层孔隙率的时空分布特征[J]. 煤炭学报,2017,42(增刊1):112−121.. doi: 10.13225/j.cnki.jccs.2016.0120

    WU Mengmeng,WANG Gang,WANG Rui,et al. Space–time porosity distribution on overlying strata above a shallow seam[J]. Journal of China Coal Society,2017,42(Sup.1):112−121.. doi: 10.13225/j.cnki.jccs.2016.0120
    [21] 江成浩,刘浩,周晓华,等. 基于PFC3D的综放工作面裂隙场演化规律数值模拟[J]. 煤矿安全,2019,50(1):205−209.

    JIANG Chenghao,LIU Hao,ZHOU Xiaohua,et al. Numerical simulation study on fissure field evolution laws of fully mechanized caving face based on PFC3D[J]. Safety in Coal Mines,2019,50(1):205−209.
    [22] CUNDALL P A,STRACK O D L. A discrete numerical model for granular assemblies[J]. Geotechnique,1979,29(1):47−65.. doi: 10.1680/geot.1979.29.1.47
    [23] XIA Zhiguo,CHEN Shaojun,LIU Xingzhe,et al. Strength characteristics and fracture evolution of rock with different shapes inclusions based on particle flow code[J]. Geomechanics and Engineering,2020,22(5):461−473.
    [24] WANG Gang,WU Mengmeng,WANG Rui,et al. Height of the mining–induced fractured zone above a coal face[J]. Engineering Geology,2017,216:140−152.. doi: 10.1016/j.enggeo.2016.11.024
    [25] WANG Chenlong,ZHANG Changsuo,ZHAO Xiaodong,et al. Dynamic structural evolution of overlying strata during shallow coal seam longwall mining[J]. International Journal of Rock Mechanics and Mining Sciences,2018,103:20−32.. doi: 10.1016/j.ijrmms.2018.01.014
    [26] POTYONDY D O,CUNDALL P A. A bonded–particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(8):1329−1364.. doi: 10.1016/j.ijrmms.2004.09.011
    [27] 许永祥,王国法,李明忠,等. 基于黏结颗粒模型的特厚坚硬煤层综放开采数值模拟研究[J]. 煤炭学报,2019,44(11):3317−3328.. doi: 10.13225/j.cnki.jccs.2019.0862

    XU Yongxiang,WANG Guofa,LI Mingzhong,et al. Numerical simulation of longwall top–coal caving with extra–thick and hard coal seam based on bonded particle model[J]. Journal of China Coal Society,2019,44(11):3317−3328.. doi: 10.13225/j.cnki.jccs.2019.0862
    [28] 石磊. 弱胶结地层条件下工作面溃水溃砂规律模拟研究[J]. 煤炭科学技术,2020,48(7):347−353.. doi: 10.13199/j.cnki.cst.2020.07.039

    SHI Lei. Numerical simulation study on law of water and sand inrush in working face under condition of weakly cemented stratum[J]. Coal Science and Technology,2020,48(7):347−353.. doi: 10.13199/j.cnki.cst.2020.07.039
    [29] 谢广祥,范浩,王磊. 浅埋煤层采场围岩力链演化规律及工程应用[J]. 煤炭学报,2019,44(10):2945−2952.. doi: 10.13225/j.cnki.jccs.2019.0706

    XIE Guangxiang,FAN Hao,WANG Lei. Evolution law and engineering application of surrounding rock force chain in shallow coal seam working face[J]. Journal of China Coal Society,2019,44(10):2945−2952.. doi: 10.13225/j.cnki.jccs.2019.0706
    [30] 杨柳,李飞,王金安,等. 综放开采顶煤与覆岩力链结构及演化特征[J]. 煤炭学报,2018,43(8):2144−2154.. doi: 10.13225/j.cnki.jccs.2018.0443

    YANG Liu,LI Fei,WANG Jin’an,et al. Structures and evolution characteristics of force chains in top coal and overlying strata under fully mechanized caving mining[J]. Journal of China Coal Society,2018,43(8):2144−2154.. doi: 10.13225/j.cnki.jccs.2018.0443
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  256
  • HTML全文浏览量:  23
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-08
  • 修回日期:  2022-04-30
  • 刊出日期:  2022-10-25
  • 网络出版日期:  2022-10-08

目录

    /

    返回文章
    返回