留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

我国煤矿区煤层气地面开发现状及技术研究进展

张群 降文萍 姜在炳 孙四清 李彬刚 杜新锋 巫修平 赵继展 范耀 范章群 韩保山 许耀波 刘柏根

张群,降文萍,姜在炳,等. 我国煤矿区煤层气地面开发现状及技术研究进展[J]. 煤田地质与勘探,2023,51(1):139−158. doi: 10.12363/issn.1001-1986.22.05.0400
引用本文: 张群,降文萍,姜在炳,等. 我国煤矿区煤层气地面开发现状及技术研究进展[J]. 煤田地质与勘探,2023,51(1):139−158. doi: 10.12363/issn.1001-1986.22.05.0400
ZHANG Qun,JIANG Wenping,JIANG Zaibing,et al. Present situation and technical research progress of coalbed methane surface development in coal mining areas of China[J]. Coal Geology & Exploration,2023,51(1):139−158. doi: 10.12363/issn.1001-1986.22.05.0400
Citation: ZHANG Qun,JIANG Wenping,JIANG Zaibing,et al. Present situation and technical research progress of coalbed methane surface development in coal mining areas of China[J]. Coal Geology & Exploration,2023,51(1):139−158. doi: 10.12363/issn.1001-1986.22.05.0400

我国煤矿区煤层气地面开发现状及技术研究进展

doi: 10.12363/issn.1001-1986.22.05.0400
基金项目: 国家科技重大专项项目(2008ZX05040,2011ZX05040,2016ZX05045-002)
详细信息
    第一作者:

    张群,1958年生,男,安徽巢湖人,博士,研究员,博士生导师,从事煤层气勘探开发研究工作. E-mail:zhangqun@cctegxian.com

  • 中图分类号: TD712;P618.11

Present situation and technical research progress of coalbed methane surface development in coal mining areas of China

  • 摘要: 回顾了我国煤炭企业组织实施和合作开展的煤矿区煤层气勘探开发进程。经过三十多年攻坚克难、不懈努力,我国煤矿区煤层气地面开发技术研究、工程试验和产业发展均取得了可喜的成绩,不仅在山西晋城矿区首次取得国内外无烟煤的煤层气开发成功,实现了煤层气规模化商业化生产,而且在安徽淮北矿区取得了碎软低渗煤层顶板水平井开发煤层气技术的重大突破,实现了碎软低渗煤层的煤层气水平井单井的高产稳产;煤矿区采动区煤层气井开发在安徽淮北、淮南,山西晋城等矿区实现了规模化工程应用。同时,梳理总结了依托“十一五”—“十三五”国家科技重大专项项目,在煤矿区煤层气地面开发理论及技术研究方面取得的主要成果及其应用效果,包括:煤层气井密闭取心技术与设备、碎软低渗煤层地面煤层气垂直井强化增产技术、碎软低渗煤层顶板和煤层水平井分段压裂开发技术、多煤层分层控压合层排采技术、低煤阶低气含量煤层地面煤层气开发技术、煤层气井极小半径多孔旋转射流侧钻水平井技术,以及煤矿采动区煤层气产量预测技术等。在此基础上,根据全国煤矿区煤炭开采发展趋势和需求,提出今后煤矿区煤层气研究应重点关注3个方向:穿浅部采空区/采动区的深部煤层气与煤炭资源协调开发、低煤阶低气含量厚煤层矿区煤层气与煤炭资源协调开发和废弃/关闭矿井煤层气开发等。

     

  • 图  煤对H2O、CO2、CH4和N2吸附势能曲线

    Fig. 1  Adsorption potential energy curves of coal for H2O, CO2, CH4 and N2

    图  同一煤结构模型对不同气体的吸附势能

    Fig. 2  Adsorption energy of same coal structure model for different gases

    图  不同变质程度煤的甲烷吸附特征曲线

    Fig. 3  Methane adsorption characteristic curves of coal in different ranks

    图  基于某煤样30℃条件下等温吸附实验数据的t-p综合吸附模型预测的甲烷吸附曲线

    Fig. 4  Methane adsorption curve predicted by t-p comprehensive adsorption model based on the isothermal adsorption test data of a coal sample at 30℃

    图  煤层气损失气量模拟测试装置与测试结果

    Fig. 5  Simulation test device and test results of gas loss of coalbed methane

    图  煤层气井密闭取心设备及其结构

    Fig. 6  Sealed coring equipment and its structure for CBM well

    图  安徽淮北芦岭煤矿4口直井产气曲线

    Fig. 7  Gas production curves of 4 vertical wells in Luling coal mine, Huaibei mining area, Anhui Province

    图  煤层顶板岩层水平井分段压裂高效开发煤层气技术模式

    Fig. 8  Efficient development technology model of CBM by staged fracturing of horizontal well in roof strata of coal seam

    图  碎软煤层水平井和碎软煤层顶板岩层水平井水力压裂数值模拟裂缝垂向剖面

    Fig. 9  Vertical fracture profile of hydraulic fracturing numerical simulation of horizontal wells in broken soft coal seam and roof strata of broken soft coal seam

    图  10  安徽芦岭煤矿LG01 水平井组井身结构垂向剖面

    Fig. 10  Vertical profile of borehole structure of LG01 horizontal well group in Luling coal mine, Anhui Province

    图  11  碎软低渗煤层顶板分段压裂水平井排采曲线

    Fig. 11  Gas drainage curve of stage-fractured horizontal well in roof of broken soft coal seam with low permeability

    图  12  非固井水平井油管+环空联合注入分段压裂模式与水平井液压定向喷射压裂工具

    Fig. 12  Staged fracturing model of tubing + combined annulus injection in non-cementing horizontal wells and hydraulic directional jet fracturing tool of horizontal well

    图  13  山西晋城矿区寺河矿15煤层水平井产气曲线

    Fig. 13  Gas production curve of No.15 coal seam horizontal well in Sihe mine, Jincheng mining area, Shanxi Province

    图  14  多煤层分层控压合层排采技术

    Fig. 14  Stratified pressure control and multilayer gas drainage technology in multi-seam

    图  15  陕西焦坪矿区4口垂直井产气特征

    Fig. 15  Gas production characteristics of 4 vertical wells in Jiaoping mining area, Shaanxi Province

    图  16  煤层气井极小半径多孔旋转射流侧钻水平井与关键部件及设备

    Fig. 16  Multi-hole rotary jet sidetracked horizontal CBM well with tight radius, the key components and equipment of CBM well

    图  17  安徽淮南矿区采动区地面井气产量与井位到回采工作面距离的关系

    Fig. 17  Relationship between gas production of surface well and distance from well to working face in Huainan mining area, Anhui Province

    图  18  煤矿采动区井煤层气抽采产能模拟软件

    Fig. 18  Productivity simulation software for CBM wells gas drainage in active mining area

    表  1  我国煤炭企业施工的煤矿区煤层气井统计数据

    Table  1  Statistical data of CBM wells in coal mining areas constructed by coal enterprises in our country

    序号 工程项目投资与
    联合投资单位
    垂直井(丛式井)/口 水平井/口 顶板水平井/口(组) 采动区井/口 总井数/口
    1 山西晋煤集团 4 919 545 1 10 5 475
    2 山西潞安矿业集团 798 1 799
    3 山西焦煤集团 688 19 76 783
    4 山西阳煤集团 225 1 1 3 230
    5 山西兰花集团 196 79 275
    6 山西大同集团 120 120
    7 辽宁铁法集团 40 138 178
    8 河南能源集团 57 2 4 63
    9 河南平煤神马集团 3 31 34
    10 安徽淮南矿业集团 8 2 26 376 412
    11 安徽淮北矿业集团 17 3 285 305
    12 安徽皖北煤电集团 6 16 22
    13 陕西陕煤彬长矿业集团 64 18 7 89
    14 陕西陕煤铜川矿业公司 7 3 10
    15 陕西陕煤韩城矿业公司 2 1 23 26
    16 贵州煤炭企业 56 4 3 10 73
    17 国能集团宁夏煤业公司 2 135 137
    18 国能神东煤炭集团公司 2 2
    19 重庆市能源投资集团 24 1 25
    20 黑龙江龙煤集团 9 3 12
    21 甘肃窑街煤电集团 26 1 27
    合计 7 139 677 68 1 213 9 097
    下载: 导出CSV

    表  2  安徽淮北矿区芦岭煤矿5口直井压裂工程参数

    Table  2  Fracturing engineering parameters of 5 vertical wells in Luling coal mine, Huaibei mining area, Anhui Province

    井号煤层射孔厚度/m实际支撑剂量/m3实际砂比/%压裂液伴注情况投球压裂
    中砂(425~850 μm)粗砂(850~1 180 μm)总砂量
    WLG018+912.8058+1710+109517.6+20.5
    104.2540105018.8
    WLG028+910.0048206818.3
    103.7140105014.6
    WLG038+912.5050+2010+109016.5+19.4CO2伴注
    105.853010(陶粒)4017.3
    WLG04104.0540105017.0
    WLG058+912.1940+2510+108517.8+22.3N2伴注
    103.5042115314.0
    下载: 导出CSV

    表  3  安徽芦岭煤矿LG01水平井分段压裂施工主要参数

    Table  3  Staged fracturing engineering parameters of LG01 horizontal well in Luling coal mine, Huaibei mining area, Anhui Province

    段序实际量/m3实际砂比/%加砂完成率/%
    液量砂量
    第1段97963.89.2799.7
    第2段97665.59.77102.3
    第3段92778.813.19107.9
    第4段92080.013.37109.6
    第5段101986.912.48108.8
    第6段97283.412.66104.4
    第7段83482.915.48104.4
    合计6 627542.5
    下载: 导出CSV

    表  4  山西晋城矿区寺河矿煤层水平井各段压裂工程数据

    Table  4  Engineering data of fracturing in each interval of coal seam horizontal well in Sihe mine, Jincheng mining area, Shanxi Province

    煤层段实际量/m3实际砂比
    %
    施工排量
    /(m3·min−1)
    液量砂量
    第1段609.340.2911.058.3~8.4
    第2段506.643.3912.527.8~8.5
    第3段633.944.6311.678.7
    第4段593.945.3213.138.3
    第5段765.254.1611.427.9~8.4
    第6段762.440.3010.348.5
    第7段822.544.7810.258.2~8.6
    第8段797.654.2212.198.1
    下载: 导出CSV
  • [1] 李明潮, 张五侪. 中国主要煤田的浅层煤成气[M]. 北京: 科学出版社, 1990.
    [2] 杨锡禄. 煤层气勘探开发现状与需要解决的技术问题[J]. 中国煤炭,1995(8):39−41.

    YANG Xilu. Present situation of CBM exploration and development and the technical problems to be solved[J]. China Coal,1995(8):39−41.
    [3] 张新民, 张遂安, 钟玲文, 等. 中国的煤层甲烷[M]. 西安: 陕西科学技术出版社, 1991.
    [4] 张新民, 庄军, 张遂安, 等. 中国煤层气地质与资源评价[M]. 北京: 科学出版社, 2002.
    [5] 张群. 关于我国煤矿区煤层气开发的战略性思考[J]. 中国煤层气,2007,4(4):3−5.

    ZHANG Qun. Strategic thinking on coal mine methane development in China[J]. China Coalbed Methane,2007,4(4):3−5.
    [6] 秦勇,袁亮,胡千庭,等. 我国煤层气勘探与开发技术现状及发展方向[J]. 煤炭科学技术,2012,40(10):1−6.

    QIN Yong,YUAN Liang,HU Qianting,et al. Status and development orientation of coalbed methane exploration and development technology in China[J]. Coal Science and Technology,2012,40(10):1−6.
    [7] 叶建平,侯淞译,张守仁. “十三五”期间我国煤层气勘探开发进展及下一步勘探方向[J]. 煤田地质与勘探,2022,50(3):15−22.

    YE Jianping,HOU Songyi,ZHANG Shouren. Progress of coalbed methane exploration and development in China during the 13th Five-Year Plan period and the next exploration direction[J]. Coal Geology & Exploration,2022,50(3):15−22.
    [8] 刘朝全, 姜学峰, 吴谋远. 2021年国内外油气行业发展报告[R]. 北京: 石油工业出版社, 2022.
    [9] 刘见中,孙海涛,雷毅,等. 煤矿区煤层气开发利用新技术现状及发展趋势[J]. 煤炭学报,2020,45(1):258−267.

    LIU Jianzhong,SUN Haitao,LEI Yi,et al. Current situation and development trend of coalbed methane development and utilization technology in coal mine area[J]. Journal of China Coal Society,2020,45(1):258−267.
    [10] 方良才,李贵红,李丹丹,等. 淮北芦岭煤矿煤层顶板水平井煤层气抽采效果分析[J]. 煤田地质与勘探,2020,48(6):155−160.

    FANG Liangcai,LI Guihong,LI Dandan,et al. Analysis on the CBM extraction effect of the horizontal wells in the coal seam roof in Luling Coal Mine in Huaibei[J]. Coal Geology & Exploration,2020,48(6):155−160.
    [11] 袁亮,郭华,李平,等. 大直径地面钻井采空区采动区瓦斯抽采理论与技术[J]. 煤炭学报,2013,38(1):1−8.

    YUAN Liang,GUO Hua,LI Ping,et al. Theory and technology of goaf gas drainage with large–diameter surface boreholes[J]. Journal of China Coal Society,2013,38(1):1−8.
    [12] 王保玉. 晋城煤业集团煤层气开发现状及规划[C]//2004第四届国际煤层气论坛会议论文集. 北京: 国家煤矿安全监察局, 2004: 83–84.
    [13] 李贵山. 晋煤集团煤层气开发利用和近期规划[J]. 中国煤层气,2005,2(2):17−19.

    LI Guishan. CBM development and utilization and its near–term targets in Jincheng anthracite mine group[J]. China Coalbed Methane,2005,2(2):17−19.
    [14] 贺天才, 田永东. 晋城矿区煤层气开发利用进展[C]//2006第六届国际煤层气研讨会论文集. 北京: 国家煤矿安全监察局, 2006: 39–43.
    [15] 贺天才,王保玉,田永东. 晋城矿区煤与煤层气共采研究进展及急需研究的基本问题[J]. 煤炭学报,2014,39(9):1779−1785.

    HE Tiancai,WANG Baoyu,TIAN Yongdong. Development and issues with coal and coal–bed methane simultaneous exploitation in Jincheng Mining Area[J]. Journal of China Coal Society,2014,39(9):1779−1785.
    [16] 王茂林, 李雁红, 高剑峰, 等. 山西晋煤集团煤层气开发利用与技术创新专题调研报告[R]//2015—2017中国生产力发展研究报告. 北京: 中国统计出版社, 2018: 78–86.
    [17] 李国富, 刘见中, 张遂安, 等. 煤矿区煤层气“四区联动”井上下联合抽采模式与技术体系[J/OL]. 煤炭科学技术, 2022: 1–11 [2023-01-04]. DOI: 10.13199/j.cnki.cst.mcq22–1076.

    LI Guofu, LIU Jianzhong, ZHANG Sui’an, et al. Mechanism and technical system of ground and underground combined drainage of CBM in“four region linkage”in coal mining area[J/OL]. Coal Science and Technology, 2022: 1–11 [2023-01-04]. DOI: 10.13199/j.cnki.cst.mcq22–1076.
    [18] 李国君,刘长久. 铁法矿区地面垂直采空区井技术[J]. 中国煤层气,2005,2(4):7−10.

    LI Guojun,LIU Changjiu. Technology for CBM development with surface vertical gob wells in Tiefa Mining Area[J]. China Coalbed Methane,2005,2(4):7−10.
    [19] 曹士滢, 魏国山, 朱亚彪. 铁法煤田煤层气地面抽采技术[C]//全国煤矿瓦斯抽采利用与通风安全技术会议论文集. 北京: 煤炭工业出版社, 2013: 237–243.
    [20] 马耕. 河南煤化集团煤层气(煤矿瓦斯)开发利用现状与展望[J]. 中国煤层气,2010,7(1):6−8.

    MA Geng. Current situation and prospect of CBM/CMM development and utilization in Henan Coal & Chemical Group[J]. China Coalbed Methane,2010,7(1):6−8.
    [21] 王志荣,郭志伟,徐培远,等. 九里山煤矿垂直井起裂压力对煤层气产能的影响[J]. 水文地质工程地质,2017,44(4):124−128.

    WANG Zhirong,GUO Zhiwei,XU Peiyuan,et al. Influence of fracturing pressure of vertical well to CBM capacity in Jiulishan Coal Mine[J]. Hydrogeology & Engineering Geology,2017,44(4):124−128.
    [22] 陈泽升. 河南中马村矿辅助层开采煤层气研究与实践[D]. 大庆: 东北石油大学, 2015.

    CHEN Zesheng. CBM mining auxiliary layer research and practice of Zhongma Coal Mine[D]. Daqing: Northeast Petroleum University, 2015.
    [23] 郭启文, 徐耀, 张文勇, 等. 河南省煤炭开采与地面煤层气协调开发之路[C]//2014第十四届国际煤层气暨页岩气研讨会论文集. 北京, 2014, 12: 357–360.
    [24] 王志磊,郭启文,王雪丽,等. 豫西强变形“三软”煤层地面定向水力掏煤技术研究[J]. 煤炭技术,2014,33(12):35−36.

    WANG Zhilei,GUO Qiwen,WANG Xueli,et al. Research on directional hydraulic technology applied to ground operation in strongly deformed“three soft”coal seam in Western Henan[J]. Coal Technology,2014,33(12):35−36.
    [25] 刘华民. 两淮煤层气开发前景初评[J]. 煤矿现代化,1997(4):8−11.

    LIU Huamin. Preliminary evaluation of coalbed methane development prospects in Lianghuai Basin[J]. Coal Mine Modernization,1997(4):8−11.
    [26] 袁亮. 淮南矿区煤矿煤层气抽采技术[J]. 中国煤层气,2006,3(1):7−9.

    YUAN Liang. Coal mine methane drainage technology in Huainan Coal Mining Area[J]. China Coalbed Methane,2006,3(1):7−9.
    [27] 周德昶,焦先军. 地面钻井抽采瓦斯技术的发展方向[J]. 矿业安全与环保,2006,33(6):77−79.

    ZHOU Dechang,JIAO Xianjun. Development direction of surface drilling gas extraction technology[J]. Mining Safety & Environmental Protection,2006,33(6):77−79.
    [28] 夏仕方. 采动区地面钻井技术在淮南矿区煤层气抽采中的应用[J]. 建井技术,2020,41(2):48−52.

    XIA Shifang. Surface drilling technology in mining area applied to coal bed methane drainage in Huainan Mining Area[J]. Mine Construction Technology,2020,41(2):48−52.
    [29] 张康顺,陈龙,钱建峰,等. 彬长矿区煤层气勘探开发潜力分析[J]. 中国煤层气,2015,12(4):3−7.

    ZHANG Kangshun,CHEN Long,QIAN Jianfeng,et al. Analysis on CBM E & D potential in Binchang Mining Area[J]. China Coalbed Methane,2015,12(4):3−7.
    [30] 陈龙,徐建民,张河,等. 大佛寺区块煤层气勘探开发现状及建议[J]. 中国煤层气,2017,14(6):33−37.

    CHEN Long,XU Jianmin,ZHANG He,et al. Status and suggestion on CBM exploration and development in Dafosi Block[J]. China Coalbed Methane,2017,14(6):33−37.
    [31] 郭燕珩,惠鹏,陈小军,等. 大佛寺井田煤层气井产能主控因素分析[J]. 陕西煤炭,2022(4):95−98.

    GUO Yanheng,HUI Peng,CHEN Xiaojun,et al. Analysis on main controlling factors of coalbed methane wells productivity in Dafosi Mine Field[J]. Shaanxi Coal,2022(4):95−98.
    [32] 易同生,高为,周培明. 贵州省煤层气资源特征及开发技术[J]. 中国煤炭地质,2018,30(6):36−40.

    YI Tongsheng,GAO Wei,ZHOU Peiming. CBM resource features and exploitation technology in Guizhou Province[J]. Coal Geology of China,2018,30(6):36−40.
    [33] 金军,杨兆彪,秦勇,等. 贵州省煤层气开发进展、潜力及前景[J]. 煤炭学报,2022,47(11):4113−4126.

    JIN Jun,YANG Zhaobiao,QIN Yong,et al. Progress,potential and prospects of CBM development in Guizhou Province[J]. Journal of China Coal Society,2022,47(11):4113−4126.
    [34] 降文萍. 煤吸附气体(CH4、CO2、N2)特征及其机理的量子化学研究[D]. 北京: 煤炭科学研究总院, 2012.

    JIANG Wenping. Study on characteristics and mechanism of coal adsorption of CH4, CO2, N2 gas by quantum chemistry method[D]. Beijing: China Coal Research Institute, 2012.
    [35] 张群,崔永君,钟玲文,等. 煤吸附甲烷的温度–压力综合吸附模型[J]. 煤炭学报,2008,33(11):1272−1278.

    ZHANG Qun,CUI Yongjun,ZHONG Lingwen,et al. Temperature–pressure comprehensive adsorption model for coal adsorption of methane[J]. Journal of China Coal Society,2008,33(11):1272−1278.
    [36] 张群,范章群. 煤层气损失气含量模拟试验及结果分析[J]. 煤炭学报,2009,34(12):1649−1654.

    ZHANG Qun,FAN Zhangqun. Simulation experiment and result analysis on lost gas content of coalbed methane[J]. Journal of China Coal Society,2009,34(12):1649−1654.
    [37] 范章群. 煤层气损失气含量模拟试验及估算模型探讨[D]. 北京: 煤炭科学研究总院, 2009.

    FAN Zhangqun. Study on simulation experiment and estimate model for coalbed methane lost gas content[D]. Beijing: China Coal Research Institute, 2009.
    [38] 孙四清. 煤层气含量地面井密闭取心与快速测定技术研究[D]. 北京: 煤炭科学研究总院, 2018.

    SUN Siqing. Study on surface well sealed coring and fast measurement for coal seam gas content[D]. Beijing: China Coal Research Institute, 2018.
    [39] 孙四清,张群,郑凯歌,等. 地面井煤层气含量精准测试密闭取心技术及设备[J]. 煤炭学报,2020,45(7):2523−2530.

    SUN Siqing,ZHANG Qun,ZHENG Kaige,et al. Technology and equipment of sealed coring for accurate determination of coalbed gas content in ground well[J]. Journal of China Coal Society,2020,45(7):2523−2530.
    [40] 张群,葛春贵,李伟,等. 碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J]. 煤炭学报,2018,43(1):150−159.

    ZHANG Qun,GE Chungui,LI Wei,et al. A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata–in horizontal well and staged hydraulic fracture[J]. Journal of China Coal Society,2018,43(1):150−159.
    [41] 韩保山. 碎软低渗煤层高强度压裂和精细排采研究: 以淮北矿区为例[D]. 北京: 煤炭科学研究总院, 2015.

    HAN Baoshan. Study on coalbed methane well enhanced fracture and fine production for broken and low–permeability coal seams with reference to Huaibei Coal Mining Area[D]. Beijing: China Coal Research Institute, 2015.
    [42] 巫修平. 碎软低渗煤层顶板水平井分段压裂裂缝扩展规律及机制研究[D]. 北京: 煤炭科学研究总院, 2017.

    WU Xiuping. Research on control mechanism of fracture propagation of multi–stage hydraulic fracturing horizontal well in roof of broken soft and low permeable coal seam[D]. Beijing: China Coal Research Institute, 2017.
    [43] 姜在炳,李浩哲,方良才,等. 紧邻碎软煤层顶板水平井分段穿层压裂裂缝延展机理[J]. 煤炭学报,2020,45(Sup.2):922−931.

    JIANG Zaibing,LI Haozhe,FANG Liangcai,et al. Fracture propagation mechanism of staged through–layer fracturing for horizontal well in roof adjacent to broken–soft coal seams[J]. Journal of China Coal Society,2020,45(Sup.2):922−931.
    [44] 姚宁平,王毅,姚亚峰,等. 我国煤矿井下复杂地质条件下钻探技术与装备进展[J]. 煤田地质与勘探,2020,48(2):1−7.

    YAO Ningping,WANG Yi,YAO Yafeng,et al. Progress of drilling technologies and equipments for complicated geological conditions in underground coal mines in China[J]. Coal Geology & Exploration,2020,48(2):1−7.
    [45] 李彬刚. 芦岭煤矿碎软低渗煤层高效抽采技术[J]. 煤田地质与勘探,2017,45(4):81−84.

    LI Bingang. Technology of CBM extraction in the crushed and soft coal seam in Luling Coal Mine[J]. Coal Geology & Exploration,2017,45(4):81−84.
    [46] 许耀波,郭盛强. 软硬煤复合的煤层气水平井分段压裂技术及应用[J]. 煤炭学报,2019,44(4):1169−1177.

    XU Yaobo,GUO Shengqiang. Technology and application of staged fracturing in coalbed methane horizontal well of soft and hard coal composite coal seam[J]. Journal of China Coal Society,2019,44(4):1169−1177.
    [47] 杜新锋. 煤层气井分层控压合层排采技术研究[D]. 北京: 煤炭科学研究总院, 2015.

    DU Xinfeng. Study on separate zone pressure control and multizone production for coal bed methane wells[D]. Beijing: China Coal Research Institute, 2015.
    [48] 张群,降文萍. 我国低煤阶煤层气地面开发产气潜力研究[J]. 煤炭科学技术,2016,44(6):211−215.

    ZHANG Qun,JIANG Wenping. Study on coalbed methane surface development and production potential of low rank coal in China[J]. Coal Science and Technology,2016,44(6):211−215.
    [49] 范耀,张群. 高压水射流极小半径钻井技术研究现状与展望[J]. 煤田地质与勘探,2020,48(5):232−239.

    FAN Yao,ZHANG Qun. Review of the tight radius drilling technology based on high pressure water jet[J]. Coal Geology & Exploration,2020,48(5):232−239.
    [50] 范耀. 煤层气井极小半径多孔旋转射流侧钻水平井关键技术研究[D]. 北京: 煤炭科学研究总院, 2022.

    FAN Yao. Research on key technology of tight radius drilling with multi–nozzle rotary jet for coalbed methane horizontal well[D]. Beijing: China Coal Research Institute, 2022.
    [51] 赵继展. 煤矿采动区煤层气井产能数值模拟及应用研究[D]. 北京: 煤炭科学研究总院, 2018.

    ZHAO Jizhan. Study on numerical simulation and application of gob coal seam gas well productivity in longwall working face[D]. Beijing: China Coal Research Institute, 2018.
    [52] 钱凯,施振生,林世国,等. 中国煤层气的产业化进程与发展建议[J]. 天然气地球科学,2009,20(6):831−840.

    QIAN Kai,SHI Zhensheng,LIN Shiguo,et al. Industrialization progression and development suggestions for coalbed methane of China[J]. Natural Gas Geoscience,2009,20(6):831−840.
    [53] 刘成林,朱杰,车长波,等. 新一轮全国煤层气资源评价方法与结果[J]. 天然气工业,2009,29(11):130−132.

    LIU Chenglin,ZHU Jie,CHE Changbo,et al. Methodologies and results of the latest assessment of coalbed methane resources in China[J]. Natural Gas Industry,2009,29(11):130−132.
  • 加载中
图(18) / 表(4)
计量
  • 文章访问数:  285
  • HTML全文浏览量:  21
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-24
  • 修回日期:  2022-12-21
  • 录用日期:  2023-01-25
  • 刊出日期:  2023-01-25
  • 网络出版日期:  2023-01-18

目录

    /

    返回文章
    返回