留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陕北烧变岩水−岩作用的劣化特性

胡鑫 孙强 晏长根 赵春虎 王少飞

胡鑫,孙强,晏长根,等. 陕北烧变岩水−岩作用的劣化特性[J]. 煤田地质与勘探,2023,51(4):76−84. doi: 10.12363/issn.1001-1986.22.06.0496
引用本文: 胡鑫,孙强,晏长根,等. 陕北烧变岩水−岩作用的劣化特性[J]. 煤田地质与勘探,2023,51(4):76−84. doi: 10.12363/issn.1001-1986.22.06.0496
HU Xin,SUN Qiang,YAN Changgen,et al. Deterioration characteristics of water-rock interaction on combustion metamorphic rocks in northern Shaanxi[J]. Coal Geology & Exploration,2023,51(4):76−84. doi: 10.12363/issn.1001-1986.22.06.0496
Citation: HU Xin,SUN Qiang,YAN Changgen,et al. Deterioration characteristics of water-rock interaction on combustion metamorphic rocks in northern Shaanxi[J]. Coal Geology & Exploration,2023,51(4):76−84. doi: 10.12363/issn.1001-1986.22.06.0496

陕北烧变岩水−岩作用的劣化特性

doi: 10.12363/issn.1001-1986.22.06.0496
基金项目: 陕西省煤矿水害防治技术重点实验室开放基金项目(6000200348);国家自然科学基金项目(41972288)
详细信息
    第一作者:

    胡鑫,1997年生,男,陕西渭南人,博士研究生,从事高温岩土方向的研究. E-mail:Huxin@cumt.edu.cn

    通信作者:

    孙强,1981年生,男,河北衡水人,博士,教授,博士生导师,从事煤矿工程地质、岩土体稳定性与地质灾害防治方面的研究工作. E-mail:sunqiang04@cumt.edu.cn

  • 中图分类号: P584

Deterioration characteristics of water-rock interaction on combustion metamorphic rocks in northern Shaanxi

  • 摘要: 鄂尔多斯盆地东北缘陕晋蒙交界地区存在大量煤火高温烘烤形成的烧变岩。与原岩相比,烧变后的岩体结构破碎孔隙发育,在长期水–岩作用下,形成了大量危岩体。以陕北神木大柳塔地区的烧变岩为对象,开展了50次干湿循环试验,测试不同循环次数后烧变岩物理性质与力学性质及其变化,探讨不同烧变程度烧变岩劣化特性。结果表明:烧变岩质量、硬度、力学性质下降,表面亮度降低,粗糙度与红黄色度增强;基于低场核磁共振技术(NMR)测试,烧变岩孔隙体积比例曲线右移,最大孔径扩张;微孔向大孔转化,大孔含量与总孔隙率升高;烧变作用使岩体孔隙发育,且提高了烧变岩的抗侵蚀能力,降低了色度、质量、粗糙度、硬度、力学性质的变化程度。长期水–岩作用可对烧变岩的物理力学性质与孔隙结构造成明显改变,烧变程度与初始孔隙结构能够影响劣化效果。根据研究不同烧变岩的劣化过程,得出加固低烧变程度岩体表面、加固沉积层理与原有裂隙、堵塞高烧变程度岩体孔隙,可降低水−岩作用的侵蚀破坏强度。

     

  • 图  烧变岩样品采集与制备

    Fig. 1  CM rock samples collection and preparation

    图  干湿循环前后烧变岩质量与表观变化

    Fig. 2  Quality and apparent changes of CM rocks before and after wetting-drying cycles

    图  不同循环次数下色度标量L*a*b*变化

    Fig. 3  Variation of chromaticity scalars L*, a*, b* under different cycles

    图  干湿循环前后烧变岩粗糙度变化

    Fig. 4  Roughness changes of CM rocks before and after wetting-drying cycles

    图  不同循环次数下烧变岩里氏硬度变化

    Fig. 5  Change of Leeb hardness of CM rocks under different cycles

    图  不同循环次数下烧变岩样孔径–孔体积比例分布

    Fig. 6  Pore size-pore volume ratio distribution of CM rock samples under different cycles

    图  不同循环次数下孔隙率变化

    Fig. 7  Variation of porosity under different cycles

    图  干湿循环前后位移−荷载曲线

    Fig. 8  Displacement-load curves before and after wetting-drying cycles

    图  不同循环次数下溶液pH变化

    Fig. 9  Solution pH changes under different cycles

    表  1  烧变岩样物理性质

    Table  1  Parameters of CM rock samples

    样品号干密度/ (g·cm−3)饱水密度/ (g·cm−3)吸水率/
    %
    岩性
    W-12.162.277.27烧变中砂岩
    W-22.592.631.44烧变细砂岩
    W-32.302.435.81烧变泥质粉砂岩
    W-42.142.3910.04烧变泥质粉砂岩
    W-52.202.316.75烧变粉砂岩
    W-62.092.1010.82烧变泥岩
    W-71.802.199.23烧变泥岩
    W-82.422.543.56烧变含泥颗粒岩屑细砂岩
    下载: 导出CSV

    表  2  不同岩样色度标量L*a*b*单独拟合

    Table  2  Individual fitting of chromaticity scalars L*, a*, b* of different rock samples

    样品号L*a*b*
    KR2KR2KR2
    W-1−0.020.060.020.450.020.19
    W-2−0.130.950.030.920.030.76
    W-3−0.080.970.010.180.030.61
    W-4−0.070.710.010.090.010.12
    W-5−0.090.810.030.980.020.44
    W-6−0.080.70−0.010.12−0.010.05
    W-7−0.020.07−0.030.19−0.010.05
    W-8−0.110.750.020.860.060.97
    下载: 导出CSV
  • [1] 张威,何发岐,闫相宾,等. 鄂尔多斯盆地北部构造叠置与天然气聚集研究[J]. 中国矿业大学学报,2022,51(4):689−703.. doi: 10.3969/j.issn.1000-1964.2022.4.zgkydxxb202204007

    ZHANG Wei,HE Faqi,YAN Xiangbin,et al. Tectonic superposition and accumulation of natural gas in northern Ordos Basin[J]. Journal of China University of Mining & Technology,2022,51(4):689−703.. doi: 10.3969/j.issn.1000-1964.2022.4.zgkydxxb202204007
    [2] GRAPES R,ZHANG Ke,PENG Zhuolun. Paralava and clinker products of coal combustion,Yellow River,Shanxi Province,China[J]. Lithos,2009,113(3/4):831−843.
    [3] COSCA M A,ESSENE E J,GEISSMAN J W,et al. Pyrometamorphic rocks associated with naturally burned coal beds,Powder River Basin,Wyoming[J]. American Mineralogist,1989,74(1/2):85−100.
    [4] NOVIKOVA S A. Fayalite from Fe–rich paralavas of ancient coal fires in the Kuzbass,Russia[J]. Geology of Ore Deposits,2009,51(8):800−811.. doi: 10.1134/S1075701509080133
    [5] SCOTT A C,LOMAX B H,COLLINSON M E,et al. Fire across the K−T boundary:Initial results from the Sugarite coal,New Mexico,USA[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2000,164(1/2/3/4):381−395.
    [6] SHI Bobo,WANG Zhiyu,LIU Peng,et al. Pozzolanicity verification of combustion metamorphic rocks from coalfield fire zones in China[J]. Journal of Loss Prevention in the Process Industries,2021,69:104390.. doi: 10.1016/j.jlp.2021.104390
    [7] 黄雷,刘池洋. 鄂尔多斯盆地北部地区延安组煤层自燃烧变产物及其特征[J]. 地质学报,2014,88(9):1753−1761.

    HUANG Lei,LIU Chiyang. Products of combustion of the Yan’an Formation coal seam and their characteristics in the northeastern Ordos Basin[J]. Acta Geologica Sinica,2014,88(9):1753−1761.
    [8] 范立民. 榆神矿区的供水水源选择[J]. 煤田地质与勘探,2002,30(3):37−39.. doi: 10.3969/j.issn.1001-1986.2002.03.011

    FAN Limin. The selection of water−supply source in Yushen mining area[J]. Coal Geology & Exploration,2002,30(3):37−39.. doi: 10.3969/j.issn.1001-1986.2002.03.011
    [9] 罗琼. 干湿循环对强风化泥岩崩解与强度特性的影响[J]. 硅酸盐通报,2020,39(4):1248−1253.. doi: 10.16552/j.cnki.issn1001-1625.2020.04.035

    LUO Qiong. Influence of dry–wet cycle on strength and disintegration of highly weathered mudstone[J]. Bulletin of the Chinese Ceramic Society,2020,39(4):1248−1253.. doi: 10.16552/j.cnki.issn1001-1625.2020.04.035
    [10] KUENZER C,STRACHER G B. Geomorphology of coal seam fires[J]. Geomorphology,2012,138(1):209−222.. doi: 10.1016/j.geomorph.2011.09.004
    [11] 申培武,唐辉明,汪丁建,等. 巴东组紫红色泥岩干湿循环崩解特征试验研究[J]. 岩土力学,2017,38(7):1990−1998.

    SHEN Peiwu,TANG Huiming,WANG Dingjian,et al. Disintegration characteristics of red–bed mudstone of Badong Formation under wet–dry cycles[J]. Rock and Soil Mechanics,2017,38(7):1990−1998.
    [12] 袁璞,戚少先,位宁宁. 干湿循环作用下深部砂岩强度劣化及能量演化规律[J]. 科学技术与工程,2022,22(1):337−343.. doi: 10.3969/j.issn.1671-1815.2022.01.041

    YUAN Pu,QI Shaoxian,WEI Ningning. Strength deterioration and energy evolution law of deep sandstone under dry−wet cycle[J]. Science Technology and Engineering,2022,22(1):337−343.. doi: 10.3969/j.issn.1671-1815.2022.01.041
    [13] 陈绪新,付厚利,秦哲. 干湿循环作用下露天矿边坡岩石损伤能量演化分析[J]. 科学技术与工程,2016,16(20):247−252.. doi: 10.3969/j.issn.1671-1815.2016.20.045

    CHEN Xuxin,FU Houli,QIN Zhe. Energy analysis of the evolution of open–pit slope rock damage under the effect of wetting and drying circulation[J]. Science Technology and Engineering,2016,16(20):247−252.. doi: 10.3969/j.issn.1671-1815.2016.20.045
    [14] 赵俊宇,许增光,柴军瑞,等. 干湿循环条件下重塑黄土强度与持水特性的试验研究[J]. 水电能源科学,2021,39(9):169−172.

    ZHAO Junyu,XU Zengguang,CHAI Junrui,et al. Experimental investigation in strength and water retention behaviors of remolded loess under drying−wetting cycle[J]. Water Resources and Power,2021,39(9):169−172.
    [15] 邵化建,李宗利,肖帅鹏,等. 干湿循环作用下混凝土力学性能及微观结构研究[J]. 硅酸盐通报,2021,40(9):2948−2955.

    SHAO Huajian,LI Zongli,XIAO Shuaipeng,et al. Mechanical properties and microstructure of concrete under drying–wetting cycles[J]. Bulletin of the Chinese Ceramic Society,2021,40(9):2948−2955.
    [16] BENAVENTE D,CURA M A G D,BERNABEU A,et al. Quantification of salt weathering in porous stones using an experimental continuous partial immersion method[J]. Engineering Geology,2001,59(3/4):313−325.
    [17] 李达朗. 干湿循环条件下红层砂岩物理力学特性研究[D]. 贵阳: 贵州大学, 2020.

    LI Dalang. Study on physical and mechanical properties of red sandstone under dry wet cycle[D]. Guiyang: Guizhou University, 2020.
    [18] 叶青. 干湿循环作用下岩溶区土洞塌陷机理研究[D]. 淮南: 安徽理工大学, 2021.

    YE Qing. Study on the collapse mechanism of karst soil cave under the action of precipitation funnel[D]. Huainan: Anhui University of Science and Technology, 2021.
    [19] 曾铃,张华麟,戚双星,等. 基于能量耗散原理的炭质泥岩崩解特征试验研究[J]. 中南大学学报(自然科学版),2021,52(11):4181−4189.

    ZENG Ling,ZHANG Hualin,QI Shuangxing,et al. Experimental study on disintegration characteristics of carbonaceous mudstone based on energy dissipation principle[J]. Journal of Central South University (Science and Technology),2021,52(11):4181−4189.
    [20] 卫国芳. 基于核磁共振的红黏土抗剪强度与孔隙关系研究[J]. 人民长江,2021,52(11):155−160.. doi: 10.16232/j.cnki.1001-4179.2021.11.026

    WEI Guofang. Study on relationship between shear strength and pore structure of lateritic clay based on NMR[J]. Yangtze River,2021,52(11):155−160.. doi: 10.16232/j.cnki.1001-4179.2021.11.026
    [21] 毛爱迪. 干湿循环作用下软基黄土孔隙结构特性试验研究[J]. 资源信息与工程,2021,36(6):96−99.. doi: 10.3969/j.issn.2095-5391.2021.06.028

    MAO Aidi. Experimental study on pore structure characteristics of soft foundation loess under dry–wetting cycle[J]. Resource Information and Engineering,2021,36(6):96−99.. doi: 10.3969/j.issn.2095-5391.2021.06.028
    [22] NOWAMOOZ H,MASROURI F. Shrinkage/swelling of compacted clayey loose and dense soils[J]. Comptes Rendus Mecanique,2009,337(11/12):781−790.
    [23] 邓华锋,肖志勇,李建林,等. 水岩作用下损伤砂岩强度劣化规律试验研究[J]. 岩石力学与工程学报,2015,34(增刊1):2690−2698.. doi: 10.13722/j.cnki.jrme.2013.1752

    DENG Huafeng,XIAO Zhiyong,LI Jianlin,et al. Deteriorating change rule test research of damage sandstone strength under water–rock interaction[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(Sup.1):2690−2698.. doi: 10.13722/j.cnki.jrme.2013.1752
    [24] 张丙吉,辛全明,季铁军,等. 干湿循环作用下砂岩力学特性及能量损伤演化[J]. 水运工程,2022(1):192−197.. doi: 10.3969/j.issn.1002-4972.2022.01.033

    ZHANG Bingji,XIN Quanming,JI Tiejun,et al. Mechanical properties and energy damage evolution of sandstone under dry−wet cycle[J]. Port & Waterway Engineering,2022(1):192−197.. doi: 10.3969/j.issn.1002-4972.2022.01.033
    [25] YING Peng,ZHU Zheming,REN Li,et al. Deterioration of dynamic fracture characteristics,tensile strength and elastic modulus of tight sandstone under dry–wet cycles[J]. Theoretical and Applied Fracture Mechanics,2020,109(3/4):102698.
    [26] 刘之喜,王伟,罗吉安,等. 岩石单轴压缩试验中能量演化分析方法[J]. 煤炭学报,2020,45(9):3131−3139.

    LIU Zhixi,WANG Wei,LUO Ji’ an,et alMethod of energy evolution of rock under uniaxial compression test[J]. Journal of China Coal Society,2020,45(9):3131−3139.
    [27] 牛建国. 神府矿区活鸡兔矿井烧变岩水文地质特征[J]. 煤田地质与勘探,2001,29(1):37−39.. doi: 10.3969/j.issn.1001-1986.2001.01.012

    NIU Jianguo. Hydrogeological characteristics of burnt rock in Huojitu Mine,Shenfu mining area[J]. Coal Geology & Exploration,2001,29(1):37−39.. doi: 10.3969/j.issn.1001-1986.2001.01.012
    [28] 孙强,王少飞,葛振龙,等. 基于热声发射技术的陕北火烧岩烧变温度识别[J]. 煤田地质与勘探,2022,50(5):82−88.. doi: 10.12363/issn.1001-1986.21.09.0490

    SUN Qiang,WANG Shaofei,GE Zhenlong,et al. Identification of burning temperature of burnt rocks in northern Shaanxi based on thermoacoustic emission technology[J]. Coal Geology & Exploration,2022,50(5):82−88.. doi: 10.12363/issn.1001-1986.21.09.0490
    [29] 郑虹,冯夏庭,陈祖煜. 岩石力学室内试验ISRM建议方法的标准化和数字化[J]. 岩石力学与工程学报,2010,29(12):2456−2468.

    ZHENG Hong,FENG Xiating,CHEN Zuyu. Standardization and digitization for ISRM suggested methods of rock mechanics laboratory tests[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(12):2456−2468.
    [30] 张嘉凡,程树范,王焕,等. 西部弱胶结软岩细观结构及水理特性试验[J]. 煤田地质与勘探,2020,48(3):116−121.. doi: 10.3969/j.issn.1001-1986.2020.03.017

    ZHANG Jiafan,CHENG Shufan,WANG Huan,et al. Experiment of mesostructure and hydrologic characteristics of weakly cemented soft rocks in western China[J]. Coal Geology & Exploration,2020,48(3):116−121.. doi: 10.3969/j.issn.1001-1986.2020.03.017
    [31] JING Xudong,SUN Qiang,JIA Hailiang,et al. Influence of high–temperature thermal cycles on the pore structure of red sandstone[J]. Bulletin of Engineering Geology and the Environment,2021,80(10):7817−7830.. doi: 10.1007/s10064-021-02389-x
    [32] VAZQUEZ P,ALONSO F J. Colour and roughness measurements as NDT to evaluate ornamental granite decay[J]. Procedia Earth and Planetary Science,2015,15:213−218.. doi: 10.1016/j.proeps.2015.08.051
    [33] 马冬冬,马芹永,黄坤,等. 基于NMR的地聚合物水泥土孔隙结构与动态力学特性研究[J]. 岩土工程学报,2021,43(3):572−578.

    MA Dongdong,MA Qinyong,HUANG Kun,et al. Pore structure and dynamic mechanical properties of geopolymer cement soil based on nuclear magnetic resonance technique[J]. Chinese Journal of Geotechnical Engineering,2021,43(3):572−578.
    [34] LI Min,WANG Deming,SHAO Zhenlu. Experimental study on changes of pore structure and mechanical properties of sandstone after high−temperature treatment using nuclear magnetic resonance[J]. Engineering Geology,2020,275:105739.. doi: 10.1016/j.enggeo.2020.105739
    [35] 张景科,刘盾,马雨君,等. 弱胶结砂岩水岩作用机制:以庆阳北石窟为例[J]. 东北大学学报(自然科学版),2022,43(7):1019−1032.. doi: 10.12068/j.issn.1005-3026.2022.07.015

    ZHANG Jingke,LIU Dun,MA Yujun,et al. Water–rock mechanism of weakly consolidated sandstone:A case study of Qingyang north grottoes[J]. Journal of Northeastern University (Natural Science),2022,43(7):1019−1032.. doi: 10.12068/j.issn.1005-3026.2022.07.015
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  10
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-25
  • 修回日期:  2023-01-07
  • 刊出日期:  2023-04-25
  • 网络出版日期:  2023-04-18

目录

    /

    返回文章
    返回