留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策

徐凤银 闫霞 李曙光 熊先钺 王予新 张雷 刘川庆 韩金良 冯延青 甄怀宾 杨贇 王成旺 李宇新

徐凤银,闫霞,李曙光,等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探,2023,51(1):115−130. doi: 10.12363/issn.1001-1986.22.06.0503
引用本文: 徐凤银,闫霞,李曙光,等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探,2023,51(1):115−130. doi: 10.12363/issn.1001-1986.22.06.0503
XU Fengyin,YAN Xia,LI Shuguang,et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration,2023,51(1):115−130. doi: 10.12363/issn.1001-1986.22.06.0503
Citation: XU Fengyin,YAN Xia,LI Shuguang,et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration,2023,51(1):115−130. doi: 10.12363/issn.1001-1986.22.06.0503

鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策

doi: 10.12363/issn.1001-1986.22.06.0503
基金项目: 国家科技重大专项项目(2016ZX05042);中国石油天然气股份有限公司前瞻性基础性技术攻关科技项目(2022DJ81,2022DJ8105);国家自然科学基金项目(42272195);中国石油天然气股份有限公司攻关性应用性科技项目“深地煤岩气成藏理论与效益开发技术研究”
详细信息
    第一作者:

    徐凤银,1964年生,男,陕西佳县人,博士,教授,博士生导师,从事煤炭、煤层气、石油、天然气地质研究与管理工作.E-mail:xufy518@sina.com.cn

    通信作者:

    闫霞,1984年生,女,山东东营人,博士,高级工程师,从事煤层气及非常规油气开发研究. E-mail:yanxia_cbm@petrochina.com.cn

  • 中图分类号: TE132;P168.11

Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin

  • 摘要: 我国深部(层)(以下均指埋深大于2 000 m)煤层气资源丰富,勘探开发潜力巨大。2019年以来,鄂尔多斯盆地东缘(鄂东缘)大宁–吉县区块逐步进入深部(层)煤层气“规模勘探+先导试验”阶段,直井日产气量突破2×104 m3,水平井日产气量突破10×104 m3,这一标志性成果既突破传统意义上煤层气勘探开发领域的深度禁区,使得煤层气总资源量有望在30.05×1012 m3基础上大幅度增加,又将成为“十四五”乃至长远煤层气产业实现规模发展的重点勘探开发方向。面对以地面传统钻井、压裂(储层改造)、排采(举升)、集输和数智化等为主体技术及开发方式的迫切需求,鄂东缘深部(层)煤层气面临许多基础理论和技术难点,包括:成藏机理和赋存规律,有利区优选方法;高产主控因素及控制机理,解吸–渗流机理与开发规律,“地质–工程一体化”开发甜点分类评价标准,关键开发指标确定方法和依据;低成本优快高效钻完井技术,水平井水泥环高效密封控制技术;煤岩缝网形成机理,低成本、高效、环保压裂入井材料,改造后缝网孔渗特征、流动规律;高盐、高水气比、出砂等工况下排采及举升控制技术;高效节能集输、规模开发所需复杂集输管网稳定运行理论与实践体系;数智气田建设和人工智能应用研究。在系统梳理上述难点基础上,针对性地提出勘探地质、开发地质、钻完井、压裂(储层改造)、排采(举升)、集输与数智化等理论与技术的研究方向和具体对策,这一成果不仅对加快鄂东缘深部(层)煤层气规模上产具有重要的指导意义,而且对国内外深部(层)煤层气规模开发具有很强的引领和示范作用,也可有力推动煤层气产业高质量发展、支撑实现国家碳达峰碳中和目标与保障清洁能源安全。

     

  • 图  区域构造纲要及大宁−吉县区块位置

    Fig. 1  Outline of regional structure and location of Daning‒Jixian block

    图  大宁–吉县区块深部(层)煤层气典型井排采曲线

    Fig. 2  Drainage production curve of typical wells for deep CBM in Daning‒Jixian block

    图  深部(层)煤层气勘探开发全息大数据分析与数智化平台框架

    Fig. 3  Holographic big data analysis and digital intelligence platform for deep CBM exploration and development

    图  鄂东缘深部(层)煤层气成藏理论及高效开发技术研究对策技术路线

    Fig. 4  Countermeasure and technical route for research on accumulation theory and efficient development technology of deep CBM in the eastern margin of Ordos Basin

    图  深部(层)煤层气成藏理论与勘探有利区优选技术路线

    Fig. 5  Accumulation theory and technical route for optimization of favorable area of exploration of deep CBM

    图  深部(层)煤层气开发甜点分类评价及技术政策优化研究技术路线

    Fig. 6  Technical route for evaluation of deep CBM development dessert and research on technical policy of development

    图  深部(层)煤层气水平井大规模压裂(储层改造)关键技术研究技术路线

    Fig. 7  Technical route for research on key technology of scaled fracturing (reservoir stimulation) of deep CBM horizontal wells

    表  1  大宁−吉县区块深部(层)与中深部(层)8号煤层地质−气藏特征对比[4]

    Table  1  Comparison of geological and gas reservoir characteristics of deep and middle-deep No.8 coal seam in Daning‒Jixian block[4]

    地质气藏条件中深部(层)8号煤层深部(层)8号煤层深部(层)煤层特征深部(层)相比中深
    部(层)的定量关系
    埋深/m1 000~1 5002 000~2 520埋深更深
    煤层厚度/m平均5.49平均7.8厚度相对更大
    含气量/(m3·t−1)6.14~20.84,平均12.3618~26,平均25.2含气量更高2倍
    孔隙率/%平均3.98平均3.13均属特低孔隙率
    渗透率/10−3 μm20.005~3.01/1.51(注入/压降试井)0.053~0.054/0.0535(注入/
    压降试井)
    渗透率更低,属特低渗透率
    储层
    低2个数量级
    割理/裂缝面割理16~18条/5 cm;
    端割理
    12条/5 cm,
    呈网状
    面割理6~10条/5 cm;
    端割理7~15条/5 cm,
    割理呈线状、网状
    面割理相对较少,端割理相当
    含气饱和度/%49.6~86.2/69.597.99~100/98.95含气饱和度更高1.4倍
    甲烷体积分数/%92.82~98.64/96.4894.81~96.65/95.43甲烷占比相当
    等温吸附特征VL平均24.9 m3/t,pL平均2.09 MPaVL平均28.29 m3/t,
    pL平均3.06 MPa
    VLpL,吸附能力强
    宏观煤岩类型半亮煤、半暗煤为主光亮煤、半亮煤为主光亮煤、半亮煤为主
    煤体结构碎裂、碎粒煤为主原生结构煤为主原生结构煤为主
    煤岩显微组分镜质组为主,体积分数60%镜质组为主,
    体积分数85.5%
    镜质组含量更高1.4倍
    镜质体平均反射率/%2.22.7相对较高1.2倍
    煤储层压力/MPa7.64~7.6617.02~20.74煤储层压力更高2.6倍
    地层压力系数0.61~0.940.902~0.936系数相对更高
    煤储层温度/℃30.50~51.1961.3~73.4温度更高1.5倍
    顶底板特征顶板以灰岩为主,
    底板以泥岩为主,含水性弱
    顶板以灰岩为主,底板以
    泥岩为主,含水性弱
    相当
    水文地质条件承压区–弱径流区承压区水动力条件更弱
    地层水特征水型为CaCl2–NaHCO3型,
    矿化度4 300~12 700 mg/L
    水型CaCl2型,矿化度
    40 158~332 006 mg/L
    矿化度更高20倍
    甲烷碳同位素
    δ13CPDB/‰
    −38.8−20.9相对更高
    下载: 导出CSV

    表  2  吉深6-7平01井水质分析结果

    Table  2  Analysis results on quality of produced water from JS6-7P01

    检测项目结果/(mg·L−1)检测项目结果/(mg·L−1)
    K+572.00Cl35 500
    Na+35 400.00SO4 2−11.42
    Ca2+16 050.00NO2 4.29
    Mg2+5 100.00NO3 26.55
    Fe3+2.04PO4 3−2.09
    Al3+HCO3 579.50
    NH4 +1 770.12CO3 2−0
    阳离子总值58 894.16阴离子总值36 123.85
    总硬度21 150.00总矿化度223 913.00
    总碱度475.50游离CO2192.20
    COD(化学需氧量)20 000.00侵蚀CO20
    可溶性SiO2300.70
    下载: 导出CSV

    表  3  大宁−吉县区块深部(层)煤层气水平井钻完钻情况

    Table  3  Drilling and completion of deep CBM horizontal wells in Daning‒Jixian block

    井号水平段/
    m
    钻遇率/
    %
    钻井周期/d完井周期/d完钻井深/m
    大吉−平25-3H90293.1099.29112.693 422
    吉深−平011 27061.4785.7996.873 812
    吉深−平021 28574.2054.2174.883 745
    吉深6-7平011 00094.8030.8334.403 601
    下载: 导出CSV
  • [1] 徐凤银,闫霞,林振盘,等. 我国煤层气高效开发关键技术研究进展与发展方向[J]. 煤田地质与勘探,2022,50(3):1−14.. doi: 10.12363/issn.1001-1986.21.12.0736

    XU Fengyin,YAN Xia,LIN Zhenpan,et al. Research progress and development direction of key technologies for efficient coalbed methane development in China[J]. Coal Geology & Exploration,2022,50(3):1−14.. doi: 10.12363/issn.1001-1986.21.12.0736
    [2] 杨秀春,徐凤银,王虹雅,等. 鄂尔多斯盆地东缘煤层气勘探开发历程与启示[J]. 煤田地质与勘探,2022,50(3):30−41.. doi: 10.12363/issn.1001-1986.21.12.0823

    YANG Xiuchun,XU Fengyin,WANG Hongya,et al. Exploration and development process of coalbed methane in eastern margin of Ordos Basin and its enlightenment[J]. Coal Geology & Exploration,2022,50(3):30−41.. doi: 10.12363/issn.1001-1986.21.12.0823
    [3] 徐凤银,王勃,赵欣,等. “双碳”目标下推进中国煤层气业务高质量发展的思考与建议[J]. 中国石油勘探,2021,26(3):9−18.

    XU Fengyin,WANG Bo,ZHAO Xin,et al. Thoughts and suggestions on promoting high quality development of China’s CBM business under the goal of“double carbon”[J]. China Petroleum Exploration,2021,26(3):9−18.
    [4] 闫霞,徐凤银,聂志宏,等. 深部微构造特征及其对煤层气高产“甜点区”的控制:以鄂尔多斯盆地东缘大吉地区为例[J]. 煤炭学报,2021,46(8):2426−2439.. doi: 10.13225/j.cnki.jccs.CB21.0751

    YAN Xia,XU Fengyin,NIE Zhihong,et al. Microstructure characteristics of Daji area in east Ordos Basin and its control over the high yield dessert of CBM[J]. Journal of China Coal Society,2021,46(8):2426−2439.. doi: 10.13225/j.cnki.jccs.CB21.0751
    [5] 聂志宏,时小松,孙伟,等. 大宁–吉县区块深层煤层气生产特征与开发技术对策[J]. 煤田地质与勘探,2022,50(3):193−200.. doi: 10.12363/issn.1001-1986.21.12.0818

    NIE Zhihong,SHI Xiaosong,SUN Wei,et al. Production characteristics of deep coalbed methane gas reservoirs in Daning–Jixian block and its development technology countermeasures[J]. Coal Geology & Exploration,2022,50(3):193−200.. doi: 10.12363/issn.1001-1986.21.12.0818
    [6] 李曙光,王红娜,徐博瑞,等. 大宁–吉县区块深层煤层气井酸化压裂产气效果影响因素分析[J]. 煤田地质与勘探,2022,50(3):165−172.. doi: 10.12363/issn.1001-1986.21.12.0800

    LI Shuguang,WANG Hongna,XU Borui,et al. Influencing factors on gas production effect of acid fractured CBM wells in deep coal seam of Daning–Jixian block[J]. Coal Geology & Exploration,2022,50(3):165−172.. doi: 10.12363/issn.1001-1986.21.12.0800
    [7] 刘洪林,王红岩,李景明. 利用碳封存技术开发我国深层煤层气资源的思考[J]. 特种油气藏,2006,13(4):6−9.. doi: 10.3969/j.issn.1006-6535.2006.04.002

    LIU Honglin,WANG Hongyan,LI Jingming. Technology of CO2 sequestration for developing deep coal bed methane in China[J]. Special Oil & Gas Reservoirs,2006,13(4):6−9.. doi: 10.3969/j.issn.1006-6535.2006.04.002
    [8] 孙钦平,赵群,姜馨淳,等. 新形势下中国煤层气勘探开发前景与对策思考[J]. 煤炭学报,2021,46(1):65−76.. doi: 10.13225/j.cnki.jccs.2020.1579

    SUN Qinping,ZHAO Qun,JIANG Xinchun,et al. Prospects and strategies of CBM exploration and development in China under the new situation[J]. Journal of China Coal Society,2021,46(1):65−76.. doi: 10.13225/j.cnki.jccs.2020.1579
    [9] 杨震,孔令峰,孙万军,等. 油气开采企业开展深层煤炭地下气化业务的前景分析[J]. 天然气工业,2015,35(8):99−105.. doi: 10.3787/j.issn.1000-0976.2015.08.015

    YANG Zhen,KONG Lingfeng,SUN Wanjun,et al. Prospects of underground deep–zone coal gasification performed by oil and gas production enterprises[J]. Natural Gas Industry,2015,35(8):99−105.. doi: 10.3787/j.issn.1000-0976.2015.08.015
    [10] 秦勇,申建,王宝文,等. 深部煤层气成藏效应及其耦合关系[J]. 石油学报,2012,33(1):48−54.. doi: 10.7623/syxb201201006

    QIN Yong,SHEN Jian,WANG Baowen,et al. Accumulation effects and coupling relationship of deep coalbed methane[J]. Acta Petrolei Sinica,2012,33(1):48−54.. doi: 10.7623/syxb201201006
    [11] 秦勇,申建. 论深部煤层气基本地质问题[J]. 石油学报,2016,37(1):125−136.

    QIN Yong,SHEN Jian. On the fundamental issues of deep coalbed methane geology[J]. Acta Petrolei Sinica,2016,37(1):125−136.
    [12] 李辛子,王运海,姜昭琛,等. 深部煤层气勘探开发进展与研究[J]. 煤炭学报,2016,41(1):24−31.

    LI Xinzi,WANG Yunhai,JIANG Zhaochen,et al. Progress and study on exploration and production for deep coalbed methane[J]. Journal of China Coal Society,2016,41(1):24−31.
    [13] 申鹏磊,吕帅锋,李贵山,等. 深部煤层气水平井水力压裂技术:以沁水盆地长治北地区为例[J]. 煤炭学报,2021,46(8):2488−2500.. doi: 10.13225/j.cnki.jccs.CB21.0683

    SHEN Penglei,LYU Shuaifeng,LI Guishan,et al. Hydraulic fracturing technology for deep coalbed methane horizontal wells:A case study in north Changzhi area of Qinshui Basin[J]. Journal of China Coal Society,2021,46(8):2488−2500.. doi: 10.13225/j.cnki.jccs.CB21.0683
    [14] 高玉巧,李鑫,何希鹏,等. 延川南深部煤层气高产主控地质因素研究[J]. 煤田地质与勘探,2021,49(2):21−27.. doi: 10.3969/j.issn.1001-1986.2021.02.003

    GAO Yuqiao,LI Xin,HE Xipeng,et al. Study on the main controlling geological factors of high yield deep CBM in southern Yanchuan block[J]. Coal Geology & Exploration,2021,49(2):21−27.. doi: 10.3969/j.issn.1001-1986.2021.02.003
    [15] 姚红生,陈贞龙,郭涛,等. 延川南深部煤层气地质工程一体化压裂增产实践[J]. 油气藏评价与开发,2021,11(3):291−296.. doi: 10.13809/j.cnki.cn32-1825/te.2021.03.003

    YAO Hongsheng,CHEN Zhenlong,GUO Tao,et al. Stimulation practice of geology−engineering integration fracturing for deep CBM in Yanchuannan field[J]. Petroleum Reservoir Evaluation and Development,2021,11(3):291−296.. doi: 10.13809/j.cnki.cn32-1825/te.2021.03.003
    [16] 康永尚,皇甫玉慧,张兵,等. 含煤盆地深层“超饱和”煤层气形成条件[J]. 石油学报,2019,40(12):1426−1438.. doi: 10.7623/syxb201912002

    KANG Yongshang,HUANGFU Yuhui,ZHANG Bing,et al. Formation conditions for deep oversaturated coalbed methane in coal−bearing basins[J]. Acta Petrolei Sinica,2019,40(12):1426−1438.. doi: 10.7623/syxb201912002
    [17] 杨敏芳,孙斌,鲁静,等. 准噶尔盆地深、浅层煤层气富集模式对比分析[J]. 煤炭学报,2019,44(增刊2):601−609.. doi: 10.13225/j.cnki.jccs.2019.0100

    YANG Minfang,SUN Bin,LU Jing,et al. Comparative analysis on the enrichment patterns of deep and shallow CBM in Junggar basin[J]. Journal of China Coal Society,2019,44(Sup.2):601−609.. doi: 10.13225/j.cnki.jccs.2019.0100
    [18] 张鹏豹,肖宇航,朱庆忠,等. 深层倾斜风化煤层特征及其对煤层气开发的影响:以河北大城区块南部为例[J]. 天然气工业,2021,41(11):86−96.. doi: 10.3787/j.issn.1000-0976.2021.11.009

    ZHANG Pengbao,XIAO Yuhang,ZHU Qingzhong,et al. Characteristics of deep inclined weathered coalbed reservoir and its influence on coalbed methane development:A case study of the southern Dacheng block of Hebei Province[J]. Natural Gas Industry,2021,41(11):86−96.. doi: 10.3787/j.issn.1000-0976.2021.11.009
    [19] 陶传奇. 鄂尔多斯盆地东缘临兴地区深部煤层气富集成藏规律研究[D]. 北京: 中国矿业大学(北京), 2019.

    TAO Chuanqi. Deep coalbed methane accumulation and reservoiring in Linxin area, eastern Ordos Basin, China[D]. Beijing: China University of Mining & Technology (Beijing), 2019.
    [20] 陈刚,秦勇,胡宗全,等. 准噶尔盆地白家海凸起深部含煤层气系统储层组合特征[J]. 煤炭学报,2016,41(1):80−86.. doi: 10.13225/j.cnki.jccs.2015.9001

    CHEN Gang,QIN Yong,HU Zongquan,et al. Characteristics of reservoir assemblage of deep CBM–bearing system in Baijiahai dome of Junggar Basin[J]. Journal of China Coal Society,2016,41(1):80−86.. doi: 10.13225/j.cnki.jccs.2015.9001
    [21] 房大志,程泽虎,李佳欣. 渝东南地区超深层煤层气高效压裂技术及精细排采制度研究与实践:以NY1井为例[J]. 煤田地质与勘探,2022,50(5):50−56.. doi: 10.12363/issn.1001-1986.21.08.0437

    FANG Dazhi,CHENG Zehu,LI Jiaxin. Efficient fracturing technology and fine drainage system of ultra–deep coalbed methane in southeast Chongqing:A case study of NY1 well[J]. Coal Geology & Exploration,2022,50(5):50−56.. doi: 10.12363/issn.1001-1986.21.08.0437
    [22] 郭绪杰,支东明,毛新军,等. 准噶尔盆地煤岩气的勘探发现及意义[J]. 中国石油勘探,2021,26(6):38−49.. doi: 10.3969/j.issn.1672-7703.2021.06.003

    GUO Xujie,ZHI Dongming,MAO Xinjun,et al. Discovery and significance of coal measure gas in Junggar Basin[J]. China Petroleum Exploration,2021,26(6):38−49.. doi: 10.3969/j.issn.1672-7703.2021.06.003
    [23] 李勇,孟尚志,吴鹏,等. 煤层气成藏机理及气藏类型划分:以鄂尔多斯盆地东缘为例[J]. 天然气工业,2017,37(8):22−30.. doi: 10.3787/j.issn.1000-0976.2017.08.003

    LI Yong,MENG Shangzhi,WU Peng,et al. Accumulation mechanisms and classification of CBM reservoir types:A case study from the eastern margin of the Ordos Basin[J]. Natural Gas Industry,2017,37(8):22−30.. doi: 10.3787/j.issn.1000-0976.2017.08.003
    [24] 马行陟,宋岩,柳少波,等. 鄂尔多斯盆地东缘韩城地区煤层气地球化学特征及其成因[J]. 天然气工业,2011,31(4):17−20.. doi: 10.3787/j.issn.1000-0976.2011.04.004

    MA Xingzhi,SONG Yan,LIU Shaobo,et al. Origins and geochemical characteristics of coalbed methane in Hancheng,eastern Ordos Basin[J]. Natural Gas Industry,2011,31(4):17−20.. doi: 10.3787/j.issn.1000-0976.2011.04.004
    [25] 秦勇. 煤系气聚集系统与开发地质研究战略思考[J]. 煤炭学报,2021,46(8):2387−2399.. doi: 10.13225/j.cnki.jccs.cb21.0719

    QIN Yong. Strategic thinking on research of coal measure gas accumulation system and development geology[J]. Journal of China Coal Society,2021,46(8):2387−2399.. doi: 10.13225/j.cnki.jccs.cb21.0719
    [26] 李勇,汤达祯,孟尚志,等. 鄂尔多斯盆地东缘煤储层地应力状态及其对煤层气勘探开发的影响[J]. 矿业科学学报,2017,2(5):416−424.. doi: 10.19606/j.cnki.jmst.2017.05.002

    LI Yong,TANG Dazhen,MENG Shangzhi,et al. The in−situ stress of coal reservoirs in east margin of Ordos Basin and its influence on coalbed methane development[J]. Journal of Mining Science and Technology,2017,2(5):416−424.. doi: 10.19606/j.cnki.jmst.2017.05.002
    [27] 李勇,许卫凯,高计县,等. “源–储–输导系统”联控煤系气富集成藏机制:以鄂尔多斯盆地东缘为例[J]. 煤炭学报,2021,46(8):2440−2453.

    LI Yong,XU Weikai,GAO Jixian,et al. Mechanism of coal measure gas accumulation under integrated control of“source reservoir–transport system”:A case study from east margin of Ordos Basin[J]. Journal of China Coal Society,2021,46(8):2440−2453.
    [28] 闫霞,温声明,聂志宏,等. 影响煤层气开发效果的地质因素再认识[J]. 断块油气田,2020,27(3):375−380.

    YAN Xia,WEN Shengming,NIE Zhihong,et al. Re−recognition of geological factors affecting coalbed methane development effect[J]. Fault−Block Oil & Gas Field,2020,27(3):375−380.
    [29] 闫霞,徐凤银,张雷,等. 微构造对煤层气的控藏机理与控产模式[J]. 煤炭学报,2022,47(2):893−905.

    YAN Xia,XU Fengyin,ZHANG Lei,et al. Reservoir−controlling mechanism and production−controlling patterns of microstructure to coalbed methane[J]. Journal of China Coal Society,2022,47(2):893−905.
    [30] 李贵红,张泓. 鄂尔多斯盆地东缘煤层气藏演化及其差异分析[J]. 中国煤层气,2020,17(3):3−8.

    LI Guihong,ZHANG Hong. Evolution history of coalbed methane reservoir and its difference in eastern Ordos Basin[J]. China Coalbed Methane,2020,17(3):3−8.
    [31] 沈玉林,秦勇,申建,等. 鄂尔多斯盆地东缘上古生界煤系叠置含气系统发育的沉积控制机理[J]. 天然气工业,2017,37(11):29−35.. doi: 10.3787/j.issn.1000-0976.2017.11.004

    SHEN Yulin,QIN Yong,SHEN Jian,et al. Sedimentary control mechanism of the superimposed gas bearing system development in the Upper Palaeozoic coal measures along the eastern margin of the Ordos Basin[J]. Natural Gas Industry,2017,37(11):29−35.. doi: 10.3787/j.issn.1000-0976.2017.11.004
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  1084
  • HTML全文浏览量:  60
  • PDF下载量:  352
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-23
  • 修回日期:  2022-07-20
  • 刊出日期:  2023-01-25
  • 网络出版日期:  2022-12-30

目录

    /

    返回文章
    返回