留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄陵矿区富油煤对流加热原位转化开发效果数值模拟

董光顺 朱超凡 厉家宗 徐绍涛 郭威

董光顺,朱超凡,厉家宗,等. 黄陵矿区富油煤对流加热原位转化开发效果数值模拟[J]. 煤田地质与勘探,2023,51(4):57−67. doi: 10.12363/issn.1001-1986.22.07.0536
引用本文: 董光顺,朱超凡,厉家宗,等. 黄陵矿区富油煤对流加热原位转化开发效果数值模拟[J]. 煤田地质与勘探,2023,51(4):57−67. doi: 10.12363/issn.1001-1986.22.07.0536
DONG Guangshun,ZHU Chaofan,LI Jiazong,et al. Numerical simulation on development effect of tar-rich coal through in-situ conversion by convective heating in Huangling Mining Area[J]. Coal Geology & Exploration,2023,51(4):57−67. doi: 10.12363/issn.1001-1986.22.07.0536
Citation: DONG Guangshun,ZHU Chaofan,LI Jiazong,et al. Numerical simulation on development effect of tar-rich coal through in-situ conversion by convective heating in Huangling Mining Area[J]. Coal Geology & Exploration,2023,51(4):57−67. doi: 10.12363/issn.1001-1986.22.07.0536

黄陵矿区富油煤对流加热原位转化开发效果数值模拟

doi: 10.12363/issn.1001-1986.22.07.0536
基金项目: 国家重点研发计划项目课题(2019YFA0705502);吉林省中青年科技创新卓越团队项目(20220508135RC);吉林省发展和改革委员会自主创新能力建设项目(2022C021)
详细信息
    第一作者:

    董光顺,1997年生,男,山东潍坊人,硕士研究生,从事油页岩地下原位转化技术研究. E-mail:donggs21@jlu.edu.cn

    通信作者:

    郭威,1979年生,男,吉林公主岭人,博士,教授,博士生导师,从事非常规油气钻采技术研究工作. E-mail:guowei6981@jlu.edu.cn

  • 中图分类号: P618.13

Numerical simulation on development effect of tar-rich coal through in-situ conversion by convective heating in Huangling Mining Area

  • 摘要: 有效开发富油煤提取石油对缓解我国油气紧张具有重要的现实意义,地下原位开采对流加热技术是富油煤有效开发的主要技术之一。以黄陵矿区延安组富油煤层为例,将高温蒸汽和氮气作为加热介质,采用地下原位转化开采对流加热的技术手段,分别研究2种加热介质在不同注入压力下的开采效果与能量回报率。结果表明:当注入气体的温度为400℃时,注蒸汽开采的加热效率更高,相同注入压力下注蒸汽开采将地层干酪根开采完所需要的时间小于注入高温氮气,二者比例为0.52~0.68,节省时间效果明显,注蒸汽开采与注氮气开采的天然气总产量比例为1.07~1.11,油总产量比例为0.82~0.85,二者差值随注入压力的增加而逐渐减小。注蒸汽开采与注氮气开采的能量回报率比例为1.754~2.363,注蒸汽开采注入压力为6 MPa时能量回报率在4.99 a达到峰值1.796,注氮气开采均未达到能量正收益。无论哪种加热介质,增加注入压力都能够缩短加热反应时间,有利于提高注蒸汽能量回报率。注氮气开采的地层流体有效渗透率较高,利于油气在地层中流动。注蒸汽开采在富油煤清洁开采方面具有优越性,为富油煤清洁开采的具体生产过程提供一定的数据参考依据。

     

  • 图  黄陵矿区延安组含煤地层综合柱状图

    Fig. 1  Comprehensive column chart of coal-bearing strata of Yan’an Formation in Huangling mining area

    图  原位注采井网分布及原理

    Fig. 2  In-situ injection and extraction well network distribution and principle

    图  气体注入流量随时间变化曲线

    Fig. 3  Gas injection flow rate versus time curve

    图  不同注入压力下天然气产出随时间变化曲线

    Fig. 4  Natural gas output versus time curve under different injection pressure

    图  注入压力为4 MPa时地层流体饱和度分布

    Fig. 5  Formation fluid saturation distribution at injection pressure of 4 MPa

    图  3 MPa下半程反应温度分布

    Fig. 6  3 MPa half-way reaction temperature distribution

    图  6 MPa下半程反应温度分布

    Fig. 7  6 MPa half-way reaction temperature distribution

    图  能量回报率随时间变化规律

    Fig. 8  Energy rate of return changes over time

    表  1  黄陵矿区富油煤的物理特征[15-19]

    Table  1  Physical characteristics of oil rich coal in Huangling Mining Area[15-19]

    参数赋值
    地层初始压力/kPa650
    地层初始温度/℃35
    基质的总孔隙率/%0.305 8
    基质的原始有效孔隙率/%0.173 2
    基质渗透率/10−3 μm20.05
    裂缝渗透率/10−3 μm210
    主裂缝渗透率/10−3 μm215 000
    基岩比热容/(J·m−1·K−1)6.5×106
    孔中干酪根浓度/(mol·m−3)3.14×104
    岩石热传导率/(W·m−1·K−1)1.84×105
    岩石热膨胀系数/K7.2×10−6
    平均总有机碳含量/%6
    岩层基质密度/(kg·m−3)2 400
    基质中初始流体饱和度/%100
    下载: 导出CSV

    表  2  拟组分的化学模型

    Table  2  Chemical modeling of the proposed components

    拟组分 分子式 标况下相态 分子量/(g·mol−1)
    干酪根 CH1.45O0.04N0.02S0.01 固相 14.7
    重油 C27.17H56.34 液相 382.4
    轻油 C15.26H32.52 液相 215.7
    烃类气 C3.16H8.33 气相 46.3
    预焦 固相 12.7
    焦炭 C 固相 12.0
    下载: 导出CSV

    表  3  干酪根热解的反应模型(BB模型,1992)

    Table  3  Reaction model of kerogen pyrolysis (modified by Braun and Burnham, 1992)

    名称化学式频率因子/d−1活化能/(kJ·mol−1)
    干酪根热解kerogen→0.010699 HO+0.009722 LO+0.007131 HC GAS+0.641083 prechar2.592×1018213.5
    重油热解HO→0.661282 LO+1.503765 HC GAS+ 13.4175prechar8.64×1017226.09
    轻油热解LO→3.237828 HC GAS+5.182242 prechar4.32×1016226.09
    预焦热解prechar→0.017177 HC GAS+0.99021 char8.64×1017226.09
    下载: 导出CSV

    表  4  地下原位开采注采参数

    Table  4  Injection production parameters of underground in-situ mining

    序号气体种类注入压力/MPa
    1高温蒸汽 3
    24
    35
    46
    5高温氮气 3
    64
    75
    86
    下载: 导出CSV

    表  5  注蒸汽开采与注氮气开采效果比较

    Table  5  Comparison of the effect of steam injection and nitrogen injection

    压力/MPa生产时间/a比例天然气产量/(m3·d−1)比例油产量/(m3·d−1)比例
    蒸汽氮气蒸汽氮气蒸汽氮气
    418.5427.390.6812 559.1411 305.461.1199.08120.380.82
    511.7519.850.5912 248.7311 368.941.08102.19120.060.85
    67.9215.140.5212 311.8011 458.771.07103.59120.020.86
      注:比例的计算方法是注蒸汽开采相关值与注氮气开采的比值。
    下载: 导出CSV

    表  6  水蒸汽蒸发焓

    Table  6  Enthalpy of water evaporation

    压力/MPa凝点/℃蒸发焓/ (J∙kg−1)
    0.2120.242 201.7
    3233.891 794.9
    4250.391 713.4
    5263.961 639.5
    6275.631 570.5
      注:0.2 MPa为统一设置的生产井压力,相当于生产井基本无回压。
    下载: 导出CSV

    表  7  注水蒸汽开采与注氮气开采能量回报率对比

    Table  7  Comparison of energy return rate between steam injection recovery and nitrogen injection recovery

    注入压力/MPa能量回报率比例到达时间/a比例
    蒸汽氮气蒸汽氮气
    41.4860.8471.75419.1926.810.716
    51.6500.7992.0659.5219.100.498
    61.7960.7602.3634.9914.620.341
      注:比例的计算方法是注水蒸汽开采相关值与注氮气开采的比值。
    下载: 导出CSV
  • [1] 王双明,师庆民,王生全,等. 富油煤的油气资源属性与绿色低碳开发[J]. 煤炭学报,2021,46(5):1365−1377.

    WANG Shuangming,SHI Qingmin,WANG Shengquan,et al. Resource property and exploitation concepts with green and low–carbon of tar–rich coal as coal–based oil and gas[J]. Journal of China Coal Society,2021,46(5):1365−1377.
    [2] 王宁波,黄勇. 粉煤加压热解–气化一体化技术 (CCSI) 的研究开发及工业化试验[J]. 煤化工,2018,46(1):6−9.

    WANG Ningbo,HUANG Yong. Research development and industrial test of pulverized coal pressurized to coal–tar and syngas integration (CCSI) technology[J]. Coal Chemical Industry,2018,46(1):6−9.
    [3] 孙友宏,郭威,邓孙华. 油页岩地下原位转化与钻采技术现状及发展趋势[J]. 钻探工程,2021,48(1):57−67.

    SUN Youhong,GUO Wei,DENG Sunhua. The status and development trend of in–situ conversion and drilling exploitation technology for oil shale[J]. Drilling Engineering,2021,48(1):57−67.
    [4] JABER J O,PROBERT S D. Non–isothermal thermogravimetry and decomposition kinetics of two Jordanian oil shales under different processing conditions[J]. Fuel Processing Technology,2000,63(1):57−70.. doi: 10.1016/S0378-3820(99)00064-8
    [5] 孙友宏,邓孙华,王洪艳. 国际油页岩开发技术与研究进展−记第33届国际油页岩会议[J]. 吉林大学学报(地球科学版),2015,45(4):1052−1059.

    SUN Youhong,DENG Sunhua,WANG Hongyan. Advances in the exploitation technologies and researches of oil shale in the world:Report on 33rd oil shale symposium in US[J]. Journal of Jilin University (Earth Science Edition),2015,45(4):1052−1059.
    [6] KANG Zhiqin,ZHAO Yangsheng,YANG Dong. Review of oil shale in–situ conversion technology[J]. Applied Energy,2020,269:115121.. doi: 10.1016/j.apenergy.2020.115121
    [7] 王洪艳, 邓孙华, 李俊锋, 等. 一种地下原位提取油页岩中烃类化合物的方法: CN201010210592. 1[P]. 2010-10-27.
    [8] 陕投集团组织完成2021年度重点科技项目《陕北富油煤地下原位热解开采先导性试验》立项评审[EB/OL]. (2021-03-04) [2022-05-07]. http://www.sxigc.com/show-42-138-1.html.
    [9] SHEN Chonghui. Reservoir simulation study of an in–situ conversion pilot of Green–River oil shale[C]. SPE 123142, 2009.
    [10] YOUTSOS M S K,MASTORAKOS E,CANT R S. Numerical simulation of thermal and reaction fronts for oil shale upgrading[J]. Chemical Engineering Science,2013,94:200−213.. doi: 10.1016/j.ces.2013.02.040
    [11] 薛晋霞. 油页岩物理力学特性实验及其原位开采非稳态热传导数学模型研究[D]. 太原: 太原理工大学, 2007.

    XUE Jinxia. The experiment research on physical & mechanicical charateristics of oil shale and its unsteady heat conduction mathematical model of in–situ processing[D]. Taiyuan: Taiyuan University of Technology, 2007.
    [12] 裴宝琳. 油页岩低温热解的实验研究[D]. 太原: 太原理工大学, 2013.

    PEI Baolin. The experimental research of oil shale decomposition at low temperature[D]. Taiyuan: Taiyuan University of Technology, 2013.
    [13] 唐佳阳,唐胜利. 黄陵矿区一号煤矿中侏罗统延安组2号煤层“三史”演化过程单井数值模拟[J]. 中国煤炭地质,2021,33(5):32−37.

    TANG Jiayang,TANG Shengli. Single well numerical simulation of middle Jurassic Yan’an Formation Coal No.2 buried,thermal and hydrocarbon generation history evolution process in Coalmine No.1,Huangling Mining Area[J]. Coal Geology of China,2021,33(5):32−37.
    [14] OJHA S P,MISRA S,TINNI A,et al. Relative permeability estimates for Wolfcamp and Eagle Ford shale samples from oil,gas and condensate windows using adsorption–desorption measurements[J]. Fuel,2017,208:52−64.. doi: 10.1016/j.fuel.2017.07.003
    [15] 李聪聪,杜芳鹏,乔军伟,等. 黄陇侏罗纪煤田彬长矿区4号煤层气化、液化特征研究[J]. 中国煤炭地质,2017,29(11):17−23.

    LI Congcong,DU Fangpeng,QIAO Junwei,et al. Study on Coal No.4 gasification and liquefaction characteristics in Binchang Mining Area,Huanglong Jurassic Coalfield[J]. Coal Geology of China,2017,29(11):17−23.
    [16] 张岩,侯连华,崔景伟,等. 鄂尔多斯盆地三叠系长7富有机质段岩石热膨胀系数随温度演化特征及启示[J]. 岩性油气藏,2022,34(4):32−41.

    ZHANG Yan,HOU Lianhua,CUI Jingwei,et al. Evolution characteristics of thermal expansion coefficient of rocks with temperature of Triassic Chang 7 organic–rich reservoir and its implications in Ordos Basin[J]. Lithologic Reservoirs,2022,34(4):32−41.
    [17] 刘晓燕. 流体饱和的岩石热力学参数研究[D]. 杭州: 浙江大学, 2015.

    LIU Xiaoyan. Research on thermodynamic parameters of fluid saturated rocks[D]. Hangzhou: Zhejiang University, 2015.
    [18] 王兴华. 浅谈陕北三叠纪煤田横山沈石畔勘探区油页岩地球物理测井物性特征[J]. 科技风,2010(22):194−195.. doi: 10.3969/j.issn.1671-7341.2010.22.167

    WANG Xinghua. Geophysical logging characteristics of oil shale in Hengshan Shenshipan exploration area of Triassic Coalfield in Northern Shaanxi[J]. Technology Wind,2010(22):194−195.. doi: 10.3969/j.issn.1671-7341.2010.22.167
    [19] 唐相路,姜振学,邵泽宇,等. 第四系弱成岩泥页岩孔隙结构及物性特征[J]. 石油实验地质,2022,44(2):210−218.

    TANG Xianglu,JIANG Zhenxue,SHAO Zeyu,et al. Pore structure and physical properties of Quaternary weak diagenetic shales[J]. Petroleum Geology & Experiment,2022,44(2):210−218.
    [20] BRAUN R L, BURNHAM A K. PMOD: A flexible model of oil and gas generation, cracking, and expulsion[J]. Organic Geochemistry, 1992, 19(1/2/3): 161–172.
    [21] ZHU Chaofan,GUO Wei,SUN Youhong,et al. Reaction mechanism and reservoir simulation study of the high–temperature nitrogen injection in−situ oil shale process:A case study in Songliao Basin,China[J]. Fuel,2022,316:123164.. doi: 10.1016/j.fuel.2022.123164
    [22] 谢青,李宁,姚征,等. 黄陵矿区富油煤焦油产率特征及主控地质因素分析[J]. 中国煤炭,2020,46(11):83−90.

    XIE Qing,LI Ning,YAO Zheng,et al. Research on the tar yield characteristics and main control factors of tar−rich coal in Huangling Mining Area[J]. China Coal,2020,46(11):83−90.
    [23] 唐佳阳. 黄陵矿区煤分子结构定量表征及其模型构建[D]. 西安: 西安科技大学, 2021.

    TANG Jiayang. Quantitative characterization and modeling of coal molecular structure in Huangling Mining Area[D]. Xi’an: Xi’an University of Science and Technology, 2021.
    [24] 贺文同. 油页岩原位转化条件下热解产物演化规律与反应进程研究[D]. 长春: 吉林大学, 2021.

    HE Wentong. Study on the evolution law and reaction process of pyrolysis products under the conditions of oil shale in–situ conversion[D]. Changchun: Jilin University, 2021.
    [25] 张海龙. 东北北部区油页岩资源评价及评价方法研究[D]. 长春: 吉林大学, 2008.

    ZHANG Hailong. Research on oil shale resource evaluation and evaluation methods in Northern of Northeast China[D]. Changchun: Jilin University, 2008.
    [26] PEI Shufeng,WANG Yanyong,ZHANG Liang,et al. An innovative nitrogen injection assisted in–situ conversion process for oil shale recovery:Mechanism and reservoir simulation study[J]. Journal of Petroleum Science and Engineering,2018,171:507−515.. doi: 10.1016/j.petrol.2018.07.071
    [27] 王磊,赵阳升,杨栋. 注水蒸汽原位热解油页岩细观特征研究[J]. 岩石力学与工程学报,2020,39(8):1634−1647.

    WANG Lei,ZHAO Yangsheng,YANG Dong. Investigation on meso–characteristics of in–situ pyrolysis of oil shale by injecting steam[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(8):1634−1647.
    [28] 周科,孙友宏,李强,等. 农安油页岩热重及热物理性质试验研究[J]. 世界地质,2016,35(4):1178−1184.

    ZHOU Ke,SUN Youhong,LI Qiang,et al. Experimental research about thermogravimetric analysis and thermal physical properties of Nong’an oil shale[J]. Global Geology,2016,35(4):1178−1184.
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  7
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-02
  • 修回日期:  2022-10-26
  • 录用日期:  2023-04-25
  • 刊出日期:  2023-04-25
  • 网络出版日期:  2023-04-23

目录

    /

    返回文章
    返回