留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AMF-玉米联合对“表土层–含水层–隔水层”排土场重构模式土壤水盐分布的影响

毕银丽 杨伟 柯增鸣 武超 李明超 薛超

毕银丽,杨伟,柯增鸣,等. AMF-玉米联合对“表土层–含水层–隔水层”排土场重构模式土壤水盐分布的影响[J]. 煤田地质与勘探,2023,51(4):68−75. doi: 10.12363/issn.1001-1986.22.08.0619
引用本文: 毕银丽,杨伟,柯增鸣,等. AMF-玉米联合对“表土层–含水层–隔水层”排土场重构模式土壤水盐分布的影响[J]. 煤田地质与勘探,2023,51(4):68−75. doi: 10.12363/issn.1001-1986.22.08.0619
BI Yinli,YANG Wei,KE Zengming,et al. Effect of AMF-maize combination on water and salt distribution in soil under the dump reconstruction mode of “topsoil-aquifer-aquitard”[J]. Coal Geology & Exploration,2023,51(4):68−75. doi: 10.12363/issn.1001-1986.22.08.0619
Citation: BI Yinli,YANG Wei,KE Zengming,et al. Effect of AMF-maize combination on water and salt distribution in soil under the dump reconstruction mode of “topsoil-aquifer-aquitard”[J]. Coal Geology & Exploration,2023,51(4):68−75. doi: 10.12363/issn.1001-1986.22.08.0619

AMF-玉米联合对“表土层–含水层–隔水层”排土场重构模式土壤水盐分布的影响

doi: 10.12363/issn.1001-1986.22.08.0619
基金项目: 国家自然科学基金项目(51974326);首都科技领军人才资助项目(Z18110006318021)
详细信息
    第一作者:

    毕银丽,1971年生,女,陕西米脂人,长江学者特聘教授,博士生导师,从事矿区微生物复垦的研究工作. E-mail:ylbi88@126.com

  • 中图分类号: TD167

Effect of AMF-maize combination on water and salt distribution in soil under the dump reconstruction mode of “topsoil-aquifer-aquitard”

  • 摘要: 土壤水盐分布严重影响煤矿区排土场生态重建及植物组配模式,为探究菌根植物影响下煤矿区排土场“表土层−含水层−隔水层”三层重构模式下的土壤水盐分布特征,采用室内土柱试验,设置种植玉米+接种丛枝菌根真菌(YM+AMF)、仅种植玉米(YM)和不种玉米+不接菌(CK)3个处理。结果表明:(1) 不同处理对土柱底部水分运移特征无显著影响,各处理含水层毛细水上升高度均约为10 cm;(2) 水分与盐分分布随土层深度均呈正相关关系;接种AMF有利于保持表层土壤水分含量,相较于YM处理土壤含水率在0~10、10~20 cm分别提高52.0%、43.9%;接菌处理降低了10~50 cm土层的盐分含量,在20~30、30~40、40~50 cm处接菌处理的电导率较YM处理分别低了41.0%、14.1%、8.1%;(3) 利用MixSIAR模型量化了不同深度土层水分对玉米的贡献率,表明YM和YM+AMF处理的主要供水层皆位于0~10 cm,供水率分别为44.3%和30.5%。同时,在累计土壤剖面水分贡献率上,接菌显著提高了中深部土层(20~70 cm)的水分贡献率,累计提升了13.8%。该研究成果对西部矿区“以水量植”的生态复垦具有重要科学指导意义。

     

  • 图  试验装置

    Fig. 1  Test set up

    图  玉米根系的AMF定殖结构

    Fig. 2  AMF colonization structure of maize roots

    图  不同处理下含水层的水分运移特征

    Fig. 3  Water transport characteristics of aquifers under different treatments

    图  土壤不同深度含水率的变化

    Fig. 4  Variation of soil moisture contents at different depths

    图  土壤不同深度电导率的变化

    Fig. 5  Changes of electrical conductivity at different depths of soil

    图  不同层位土壤水分δ2H-δ18O拟合关系

    Fig. 6  The δ2H-δ18O fitting relationship of soil moisture at different horizons

    图  土壤水同位素组成随土壤剖面的变化规律

    Fig. 7  Variation of soil water isotopic composition with soil profile

    图  不同深度土壤的水分贡献率

    Fig. 8  Water contribution rates of soil at different depths

    图  CK处理土壤氢氧稳定同位素的聚类分析树状图

    Fig. 9  Dendrogram of cluster analysis of stable isotopes of hydrogen and oxygen in CK treated soil

    表  1  供试砂土与粉质黏土的理化性质

    Table  1  Physicochemical properties of sand and silty clay were tested

    土层土壤质地设计密度/(g·cm−3)电导率EC/(μS·cm−1)最大持水量/%有机质含量/(g·kg−1)粒径质量分数/%
    2.00~>0.10 mm0.10~>0.01 mm≤0.01 mm
    含水层粉质黏土1.55231.5330.858.5716.677.26.2
    土壤层砂土1.60158.5018.834.4375.320.93.8
    下载: 导出CSV

    表  2  不同处理下玉米的生物量和菌根效应

    Table  2  Biomass and mycorrhizal effects of maize under different treatments

    处理地上生物量/g地下生物量/g菌根侵染率/%菌根贡献率/%
    CK
    YM4.32±0.17a0.98±0.01a4.43±1.50a
    YM+AMF4.27±0.71a1.09±0.17a46.60±3.84b1.21
      注:数据表示为平均值±标准误差,同一列不同字母表示在P<0.05水平上有显著差异。
    下载: 导出CSV

    表  3  不同层位累计的水分贡献

    Table  3  The accumulated water contribution of different horizons

    不同层位YMYM+AMF
    浅层(0~10 cm)44.30%±0.02a30.50%±0.05b
    中层(10~30 cm)19.10%±0.03a21.50%±0.03b
    深层(30~70 cm)36.50%±0.04a48.40%±0.04b
    注:同一行不同字母表示在P<0.05水平上有显著差异。
    下载: 导出CSV
  • [1] 顾大钊. “能源金三角”地区煤炭开采水资源保护与利用工程技术[J]. 煤炭工程,2014,46(10):34−37.. doi: 10.11799/ce201410008

    GU Dazhao. Water resource protection and utilization engineering technology of coal mining in“energy golden triangle”region[J]. Coal Engineering,2014,46(10):34−37.. doi: 10.11799/ce201410008
    [2] 董少刚,贾志斌,刘白薇,等. 干旱区井工开采煤矿山生态水文地质演化研究:以鄂尔多斯某煤矿为例[J]. 工程勘察,2013,41(2):45−48.

    DONG Shaogang,JIA Zhibin,LIU Baiwei,et al. Study on eco–hydrogeological evolution in underground mining coal of arid areas:Taking the coal mine in Ordos as the example[J]. Geotechnical Investigation & Surveying,2013,41(2):45−48.
    [3] 毕银丽,彭苏萍,杜善周. 西部干旱半干旱露天煤矿生态重构技术难点及发展方向[J]. 煤炭学报,2021,46(5):1355−1364.

    BI Yinli,PENG Suping,DU Shanzhou. Technological difficulties and future directions of ecological reconstruction in open pit coal mine of the arid and semi−arid areas of western China[J]. Journal of China Coal Society,2021,46(5):1355−1364.
    [4] 谷裕,王金满,刘慧娟,等. 干旱半干旱煤矿区土壤含水率研究进展[J]. 灌溉排水学报,2016,35(4):81−86.

    GU Yu,WANG Jinman,LIU Huijuan,et al. Advance of soil moisture in arid and semi–arid mining areas[J]. Journal of Irrigation and Drainage,2016,35(4):81−86.
    [5] GUO Nan,BI Yinli,ZHANG Yanxu,et al. Grazing and mining influence the population of arbuscular mycorrhizal fungi around the opencast coal mine pit[J]. Environmental Science and Pollution Research,2021,28(17):21425−21436.. doi: 10.1007/s11356-020-11656-5
    [6] ZHANG Beibei,CHANG S X,ANYIA A O. Mycorrhizal inoculation and nitrogen fertilization affect the physiology and growth of spring wheat under two contrasting water regimes[J]. Plant and Soil,2016,398(1/2):47−57.
    [7] ELISABETH A,ANTONIO R,ROSARIO A. Differential activity of autochthonous bacteria in controlling drought stress in native lavandula and salvia plants species under drought conditions in natural arid soil[J]. Microbial Ecology,2014,67(2):410−420.. doi: 10.1007/s00248-013-0326-9
    [8] ARMADA E,PROBANZA A,ROLDÁN A,et al. Native plant growth promoting bacteria bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in lavandula dentata plants[J]. Journal of Plant Physiology,2016,192:1−12.. doi: 10.1016/j.jplph.2015.11.007
    [9] 王靖伟. 露天煤矿排土场地层重构试验研究[D]. 徐州: 中国矿业大学, 2019.

    WANG Jingwei. Experimental study on stratum reconstruction of dump soil in open–pit coal mine[D]. Xuzhou: China University of Mining and Technology, 2019.
    [10] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.
    [11] BI Yinli,WU Chao,WANG Shuangming,et al. Combined arbuscular mycorrhizal inoculation and loess amendment improve rooting and revegetation post–mining[J]. Rhizosphere,2022,23:100560.. doi: 10.1016/j.rhisph.2022.100560
    [12] 毕银丽,周会丽,马少鹏,等. 接菌对花生耐旱及表型结构的影响:以陕北煤矿区为例[J]. 煤炭学报,2021,46(6):1936−1944.

    BI Yinli,ZHOU Huili,MA Shaopeng,et al. Effects of bacterial inoculation on drought tolerance and phenotypic structure of peanut:Take coal mining area of northern Shaanxi as example[J]. Journal of China Coal Society,2021,46(6):1936−1944.
    [13] KE Zengming,LIU Xiaoli,MA Lihui,et al. Rainstorm events increase risk of soil salinization in a loess hilly region of China[J]. Agricultural Water Management,2021,256:107081.. doi: 10.1016/j.agwat.2021.107081
    [14] XU Jing,GUO Ziyan,LI Zhimin,et al. Stable oxygen isotope analysis of the water uptake mechanism via the roots in spring maize under the ridge–furrow rainwater harvesting system in a semi–arid region[J]. Agricultural Water Management,2021,252:106879.. doi: 10.1016/j.agwat.2021.106879
    [15] MA Ying,SONG Xianfang. Using stable isotopes to determine seasonal variations in water uptake of summer maize under different fertilization treatments[J]. Science of the Total Environment,2016,550:471−483.. doi: 10.1016/j.scitotenv.2016.01.148
    [16] 周艳清,高晓东,王嘉昕,等. 柴达木盆地灌区枸杞根系水分吸收来源研究[J]. 中国生态农业学报(中英文),2021,29(2):400−409.

    ZHOU Yanqing,GAO Xiaodong,WANG Jiaxin,et al. Lycium barbarum root water uptake characteristics in the Qaidam Basin irrigation[J]. Chinese Journal of Eco–Agriculture,2021,29(2):400−409.
    [17] 李雨芊,孟玉川,宋泓苇,等. 典型林区水分氢氧稳定同位素在土壤–植物–大气连续体中的分布特征[J]. 应用生态学报,2021,32(6):1928−1934.

    LI Yuqian,MENG Yuchuan,SONG Hongwei,et al. Distribution of hydrogen and oxygen stable isotope of water in soil−plant−atmosphere continuum (SPAC) system of a typical forest area[J]. Chinese Journal of Applied Ecology,2021,32(6):1928−1934.
    [18] 刘婷,姜春露,郭燕,等. 粉煤灰含量对砂土中毛细水上升规律的影响[J]. 煤炭学报,2016,41(11):2836−2840.

    LIU Ting,JIANG Chunlu,GUO Yan,et al. Effect of fly ash content on capillary water rise law in sandy soil[J]. Journal of China Coal Society,2016,41(11):2836−2840.
    [19] 张平,吴昊,殷洪建,等. 土层结构对毛细水上升高度和地下水蒸发影响的研究[J]. 节水灌溉,2011(3):6−8.

    ZHANG Ping,WU Hao,YIN Hongjian,et al. Research on influence of construction of soil layer on height of capillary water upward movement and evaporation of groundwater[J]. Water Saving Irrigation,2011(3):6−8.
    [20] HILLEL D. Salinity management for sustainable irrigation: Integrating science, environment, and economics[M]. Washington: The World Bank, 2012.
    [21] 邓亚鹏,孙池涛,孙景生,等. 秸秆覆盖条件下滨海盐渍土水盐分布及蒸发特征[J]. 中国农村水利水电,2021(3):128−133.. doi: 10.3969/j.issn.1007-2284.2021.03.025

    DENG Yapeng,SUN Chitao,SUN Jingsheng,et al. Effects of straw mulching on water and salt distribution and evaporation characteristics in coastal saline soil[J]. China Rural Water and Hydropower,2021(3):128−133.. doi: 10.3969/j.issn.1007-2284.2021.03.025
    [22] 张万锋,杨树青,靳亚红,等. 秸秆深埋下灌水量对土壤水盐分布与夏玉米产量的影响[J]. 农业机械学报,2021,52(1):228−237.. doi: 10.6041/j.issn.1000-1298.2021.01.026

    ZHANG Wanfeng,YANG Shuqing,JIN Yahong,et al. Effects of irrigation amount on soil water and salt distribution and summer maize yield under deeply buried straw[J]. Transactions of the Chinese Society of Agricultural Machinery,2021,52(1):228−237.. doi: 10.6041/j.issn.1000-1298.2021.01.026
    [23] LEIFHEIT E F,VERESOGLOU S D,LEHMANN A,et al. Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation:A meta analysis[J]. Plant and Soil,2014,374(1/2):523−537.
    [24] BITTERLICH M,SANDMANN M,GRAEFE J. Arbuscular mycorrhiza alleviates restrictions to substrate water flow and delays transpiration limitation to stronger drought in tomato[J]. Frontiers in Plant Science,2018,9:154.. doi: 10.3389/fpls.2018.00154
    [25] 毕银丽. 丛枝菌根真菌在煤矿区沉陷地生态修复应用研究进展[J]. 菌物学报,2017,36(7):800−806.

    BI Yinli. Research advance of application of arbuscular mycorrhizal fungi to ecological remediation in subsided land of coal mining areas[J]. Mycosystema,2017,36(7):800−806.
    [26] 邢丹. 石漠化地区丛枝菌根真菌促进桑树根系水分吸收的机理研究[D]. 贵阳: 贵州大学, 2018.

    XING Dan. Mechanisms underlying the promotion of arbuscular mycorrhiza fungi to water absorption of mulberry roots from rocky desertification habitats[D]. Guiyang: Guizhou University, 2018.
    [27] PAVITHRA D,YAPA N. Arbuscular mycorrhizal fungi inoculation enhances drought stress tolerance of plants[J]. Groundwater for Sustainable Development,2018,7:490−494.. doi: 10.1016/j.gsd.2018.03.005
    [28] BERRUTI A,LUMINI E,BALESTRINI R,et al. Arbuscular mycorrhizal fungi as natural biofertilizers:Let’s benefit from past successes[J]. Frontiers in Microbiology,2016,6:1559.
    [29] CHERIF H,MARASCO R,ROLLI E,et al. Oasis desert farming selects environment–specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought[J]. Environmental Microbiology Reports,2015,7(4):668−678.. doi: 10.1111/1758-2229.12304
    [30] SCHWINNING S,STARR B I,EHLERINGER J R. Summer and winter drought in a cold desert ecosystem (Colorado Plateau) part I:Effects on soil water and plant water uptake[J]. Journal of Arid Environments,2005,60(4):547−566.. doi: 10.1016/j.jaridenv.2004.07.003
    [31] 中华人民共和国国土资源部. 土地复垦质量控制标准: TD/T 1036—2013[S]. 北京: 中国标准出版社, 2013.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  173
  • HTML全文浏览量:  14
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-15
  • 修回日期:  2023-03-02
  • 刊出日期:  2023-04-25
  • 网络出版日期:  2023-04-14

目录

    /

    返回文章
    返回