留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑射束硬化的煤岩CT数据阈值分割方法及应用

王凯 付强 徐超 艾子博 王磊 舒龙勇

王凯,付强,徐超,等. 考虑射束硬化的煤岩CT数据阈值分割方法及应用[J]. 煤田地质与勘探,2023,51(4):11−22. doi: 10.12363/issn.1001-1986.22.08.0641
引用本文: 王凯,付强,徐超,等. 考虑射束硬化的煤岩CT数据阈值分割方法及应用[J]. 煤田地质与勘探,2023,51(4):11−22. doi: 10.12363/issn.1001-1986.22.08.0641
WANG Kai,FU Qiang,XU Chao,et al. Threshold segmentation method of CT scanning data of coal and rock samples considering beam hardening effect and its application[J]. Coal Geology & Exploration,2023,51(4):11−22. doi: 10.12363/issn.1001-1986.22.08.0641
Citation: WANG Kai,FU Qiang,XU Chao,et al. Threshold segmentation method of CT scanning data of coal and rock samples considering beam hardening effect and its application[J]. Coal Geology & Exploration,2023,51(4):11−22. doi: 10.12363/issn.1001-1986.22.08.0641

考虑射束硬化的煤岩CT数据阈值分割方法及应用

doi: 10.12363/issn.1001-1986.22.08.0641
基金项目: 国家自然科学基金项目(52130409,51974321);国家自然科学基金创新研究群体项目(52121003)
详细信息
    第一作者:

    王凯,1972年生,男,河南驻马店人,长江学者特聘教授,博士生导师,从事安全科学与工程领域的教学与科研工作.E-mail:kaiwang@cumtb.edu.cn

    通信作者:

    徐超,1988年生,男,山东泰安人,博士,副教授,博士生导师,从事煤岩瓦斯动力灾害防治方面的研究. E-mail:xuchao@cumtb.edu.cn

  • 中图分类号: TD32

Threshold segmentation method of CT scanning data of coal and rock samples considering beam hardening effect and its application

  • 摘要: 射束硬化是工业CT应用中的常见现象,射束硬化会导致同一密度组分呈现不同的灰度值,严重影响对各组分的分割及后期重构。为对射束硬化效应影响下的煤岩试样CT扫描数据精确划分,研究了射束硬化影响下的煤岩试样灰度值的分布规律,发现灰度束上灰度值的变化能够真实反映组分密度变化,并从理论上推导证明了这一结论,据此提出了灰度束阈值分割方法。灰度束阈值分割方法是将CT重建后的三维灰度数据体离散为一维的灰度束,根据目标组分种类的数量选择合适的全阈分割方法进行分割,并对其进行多值化,将多值化后的一维数据体重新集合为三维数据,三维数据中不同值代表不同组分,从而将各组分区分。采用灰度束阈值分割方法对6种射束影响下的煤岩组合体扫描数据进行了阈值分割并重构,证明了本方法的有效性。研究结果能够对非均质煤岩及其他材料CT扫描数据精确划分提供参考。

     

  • 图  单能及多能射线投影值与射线穿过厚度关系

    Fig. 1  Relationship of the projection value of mono-energy and multi-energy rays with the penetration thickness

    图  射束硬化效应灰度分布

    Fig. 2  Grayscale distribution of beam hardening effect

    图  射束硬化影响下二值化结果

    Fig. 3  Binarization under beam hardening effect

    图  射束硬化影响下三维重构效果

    Fig. 4  Three-dimensional reconstruction under beam hardening effect

    图  理想状态及射束硬化影响下煤岩水平灰度分布

    Fig. 5  Horizontal grayscale distribution of coal and rock in ideal state and under beam hardening effect

    图  纵切面垂向中线灰度分布及频率

    Fig. 6  Grayscale distribution and frequency of vertical centerline in longitudinal section

    图  试件1纵切面不同位置垂向中线灰度分布

    Fig. 7  Grayscale distribution of vertical centerline at different positions in longitudinal section of specimen 1

    图  扫描角度α时试件中各点相对位置

    Fig. 8  Relative position of each point in the sample at scanning angle α

    图  扫描角度β时试件中各点相对位置

    Fig. 9  Relative position of each point in the scanning angle β

    图  10  三维灰度数据

    Fig. 10  Three-dimensional grayscale data

    图  11  计算程序流程

    Fig. 11  Calculation procedure

    图  12  灰度束二值化效果

    Fig. 12  Binarization of gray beam

    图  13  灰度束阈值分割法二值化效果

    Fig. 13  Binarization of threshold segmentation method of grayscale beam

    图  14  煤体部分三维重构模型

    Fig. 14  Three-dimensional reconstruction model of coal body

    表  1  煤岩不同位置处灰度值

    Table  1  Grayscale value at different locations of coal and rock

    试件编号0 mm边界灰度值50 mm边界灰度值最小灰度值硬化系数
    岩体部分试件12552551252.04
    试件22552551112.3
    试件32522511192.12
    试件4255225892.87
    试件52552551192.14
    试件6255255912.80
    煤体部分试件19996661.50
    试件210190651.55
    试件3121118871.39
    试件4121118791.53
    试件5108108781.38
    试件6131181444.11
    下载: 导出CSV
  • [1] 金衍,韦世明,陈康平,等. 致密气自扩散渗流模型[J]. 石油学报,2020,41(6):737−744.

    JIN Yan,WEI Shiming,CHEN Kangping,et al. Self–diffusion flow model of tight gas[J]. Acta Petrolei Sinica,2020,41(6):737−744.
    [2] 黄书岭,钟鹏举,丁秀丽. 绿泥石片岩单轴压缩特征强度各向异性特征研究[J]. 岩石力学与工程学报,2021,40(增刊2):3182−3190.

    HUANG Shuling,ZHONG Pengju,DING Xiuli. Study on characteristic strength anisotropy of layered chlorite schist under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(Sup.2):3182−3190.
    [3] 夏同强,王有湃,周福宝,等. 煤岩体应力–渗流–温度多过程耦合试验系统[J]. 中国矿业大学学报,2021,50(2):205−213.

    XIA Tongqiang,WANG Youpai,ZHOU Fubao,et al. The stress–seepage–temperature multi–process coupling test system for coal and rock mass[J]. Journal of China University of Mining & Technology,2021,50(2):205−213.
    [4] 钟江城,王子辉,王路军,等. 基于CT三维重构的深部煤体损伤演化规律[J]. 煤炭学报,2019,44(5):1482−1494.

    ZHONG Jiangcheng,WANG Zihui,WANG Lujun,et al. Characteristics of damage evolution of deep coal based on CT three–dimensional reconstruction[J]. Journal of China Coal Society,2019,44(5):1482−1494.
    [5] 王刚,江成浩,陈雪畅. 煤岩体孔隙结构应力特征的数值模拟研究[J]. 煤田地质与勘探,2021,49(1):57−64.

    WANG Gang,JIANG Chenghao,CHEN Xuechang. Numerical simulation of pore structure stress characteristics of coal and rock mass[J]. Coal Geology & Exploration,2021,49(1):57−64.
    [6] 岳中琦. 基于数字图像的真实细观非均质岩土力学分析数值方法[J]. 地球物理学报,2022,65(1):108−118.

    YUE Zhongqi. Digital image based numerical methods for mechanical analyses of geomaterials with actual meso–heterogeneity[J]. Chinese Journal of Geophysics,2022,65(1):108−118.
    [7] 王登科,张航,魏建平,等. 基于工业CT扫描的瓦斯压力影响下含瓦斯煤裂隙动态演化特征[J]. 煤炭学报,2021,46(11):3550−3564.. doi: 10.13225/j.cnki.jccs.2020.1976

    WANG Dengke,ZHANG Hang,WEI Jianping,et al. Dynamic evolution characteristics of fractures in gas–bearing coal under the influence of gas pressure using industrial CT scanning technology[J]. Journal of China Coal Society,2021,46(11):3550−3564.. doi: 10.13225/j.cnki.jccs.2020.1976
    [8] 鞠杨,任张瑜,郑江韬,等. 岩石灾变非连续结构与多物理场效应的透明解析与透明推演[J]. 煤炭学报,2022,47(1):210−232.

    JU Yang,REN Zhangyu,ZHENG Jiangtao,et al. Transparentized solutions and interpretation for the effects of discontinuous structures and multiphysics on rock failure[J]. Journal of China Coal Society,2022,47(1):210−232.
    [9] 张艳博,徐跃东,刘祥鑫,等. 基于CT的岩石三维裂隙定量表征及扩展演化细观研究[J]. 岩土力学,2021,42(10):2659−2671.

    ZHANG Yanbo,XU Yuedong,LIU Xiangxin,et al. Quantitative characterization and mesoscopic study of propagation and evolution of three–dimensional rock fractures based on CT[J]. Rock and Soil Mechanics,2021,42(10):2659−2671.
    [10] 蒋明镜,李光帅,曹培,等. 用于土体宏微观力学特性测试的微型三轴仪研制[J]. 岩土工程学报,2020,42(增刊1):6−10.

    JIANG Mingjing,LI Guangshuai,CAO Pei,et al. Development of miniature triaxial apparatus for testing of macro– and micro–mechanical behaviors of soils[J]. Chinese Journal of Geotechnical Engineering,2020,42(Sup.1):6−10.
    [11] 董志伟,郭红玉,夏大平,等. 基于显微CT的煤生物降解过程中孔隙演化精细表征[J]. 煤田地质与勘探,2019,47(5):63−69.

    DONG Zhiwei,GUO Hongyu,XIA Daping,et al. Micro CT–based meticulous characterization of porosity evolution of coal in the process of biodegradation[J]. Coal Geology & Exploration,2019,47(5):63−69.
    [12] 王登科,魏强,魏建平,等. 煤的裂隙结构分形特征与分形渗流模型研究[J]. 中国矿业大学学报,2020,49(1):103−109.

    WANG Dengke,WEI Qiang,WEI Jianping,et al. Fractal characteristics of fracture structure and fractal seepage model of coal[J]. Journal of China University of Mining & Technology,2020,49(1):103−109.
    [13] 方辉煌,桑树勋,刘世奇,等. 基于微米焦点CT技术的煤岩数字岩石物理分析方法:以沁水盆地伯方3号煤为例[J]. 煤田地质与勘探,2018,46(5):167−174.

    FANG Huihuang,SANG Shuxun,LIU Shiqi,et al. Study of digital petrophysical analysis method based on micro–focus X–ray tomography:A case study from No. 3 coal seam of Bofang Mining Area in Southern Qinshui Basin[J]. Coal Geology & Exploration,2018,46(5):167−174.
    [14] 王增勇,汤光平,李建文,等. 工业CT技术进展及应用[J]. 无损检测,2010,32(7):504−508.

    WANG Zengyong,TANG Guangping,LI Jianwen,et al. Development and application of industrial CT[J]. Nondestructive Testing,2010,32(7):504−508.
    [15] 高丽娜,陈文革. CT技术的应用发展及前景[J]. CT理论与应用研究,2009,18(1):99−109.

    GAO Lina,CHEN Wenge. The application and prospect of CT[J]. CT Theory and Applications,2009,18(1):99−109.
    [16] 张益海,张催,潘小东,等. 锥束工业CT射束硬化校正方法[J]. 无损检测,2017,39(6):8−12.

    ZHANG Yihai,ZHANG Cui,PAN Xiaodong,et al. The methods for beam hardening correction of cone–beam industrial computed tomography[J]. Nondestructive Testing,2017,39(6):8−12.
    [17] 陈云斌,陈思,李敬. 硬化伪影的新型表现形式及其校正[J]. 强激光与粒子束,2016,28(10):104001.. doi: 10.11884/HPLPB201628.160047

    CHEN Yunbin,CHEN Si,LI Jing. Form and correction of a new type of artifact induced by beam hardening[J]. High Power Laser and Particle Beams,2016,28(10):104001.. doi: 10.11884/HPLPB201628.160047
    [18] 张学松,赵柏山. 基于Radon变换的CT图像杯状伪影校正[J]. CT理论与应用研究,2016,25(5):539−546.

    ZHANG Xuesong,ZHAO Baishan. Cupping artifacts calibration in CT image based on radon transform[J]. CT Theory and Applications,2016,25(5):539−546.
    [19] ROMANO C,MINTO J M,SHIPTON Z K,et al. Automated high accuracy,rapid beam hardening correction in X–ray computed tomography of multi−mineral,heterogeneous core samples[J]. Computers and Geosciences,2019,131:144−157.. doi: 10.1016/j.cageo.2019.06.009
    [20] 张俊,李磊,张峰,等. X射线CT射束硬化校正方法综述[J]. CT理论与应用研究,2013,22(1):195−204.

    ZHANG Jun,LI Lei,ZHANG Feng,et al. Review of the methods for beam hardening correction in X–ray computed tomography[J]. CT Theory and Applications,2013,22(1):195−204.
    [21] 陈浩,陈云斌,李寿涛. 局部扫描情况下多项式拟合的X射线硬化校正[J]. 强激光与粒子束,2015,27(11):114001.

    CHEN Hao,CHEN Yunbin,LI Shoutao. X–ray beam hardening correction based on polynomial fitting in local scanning[J]. High Power Laser and Particle Beams,2015,27(11):114001.
    [22] 叶侠娟,张朋. CT系统的能谱估计及射束硬化校正算法[J]. CT理论与应用研究,2003,12(2):10−15.

    YE Xiajuan,ZHANG Peng. Estimation of energy spectra of CT system and beam–hardening correction algorithm[J]. CT Theory and Applications,2003,12(2):10−15.
    [23] 史再峰,谢向桅,曹清洁,等. 基于卷积神经网络的能谱CT射束硬化伪影抑制方法[J]. 南开大学学报(自然科学版),2021,54(2):74−79.

    SHI Zaifeng,XIE Xiangwei,CAO Qingjie,et al. Beam hardening artifacts reduction in spectral CT based on convolutional neural network[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis,2021,54(2):74−79.
    [24] 郭永存,何磊,刘普壮,等. 煤矸双能X射线图像多维度分析识别方法[J]. 煤炭学报,2021,46(1):300−309.

    GUO Yongcun,HE Lei,LIU Puzhuang,et al. Multi–dimensional analysis and recognition method of coal and gangue dual–energy X–ray images[J]. Journal of China Coal Society,2021,46(1):300−309.
    [25] 周丽平,孙怡,程凯,等. 工业X射线CT中基于深度学习的射束硬化伪影抑制方法(英文)[J]. CT理论与应用研究,2018,27(2):227−240.. doi: 10.15953/j.1004-4140.2018.27.02.11

    ZHOU Liping,SUN Yi,CHENG Kai,et al. Deep learning based beam hardening artifact reduction in industrial X–ray CT[J]. CT Theory and Applications,2018,27(2):227−240.. doi: 10.15953/j.1004-4140.2018.27.02.11
    [26] MONSI M,SAEKI T. On the factor light in plant communities and its importance for matter production[J]. Annals of Botany,2005,95(3):549−567.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  20
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-23
  • 修回日期:  2022-11-09
  • 录用日期:  2023-04-25
  • 刊出日期:  2023-04-25
  • 网络出版日期:  2023-04-18

目录

    /

    返回文章
    返回