留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双U型地埋管换热器换热性能试验研究

李磊 张卫东 徐拴海 赵永哲 党东生 汪启龙 苟立 雷燕子

李磊,张卫东,徐拴海,等. 双U型地埋管换热器换热性能试验研究[J]. 煤田地质与勘探,2023,51(4):125−132. doi: 10.12363/issn.1001-1986.22.09.0701
引用本文: 李磊,张卫东,徐拴海,等. 双U型地埋管换热器换热性能试验研究[J]. 煤田地质与勘探,2023,51(4):125−132. doi: 10.12363/issn.1001-1986.22.09.0701
LI Lei,ZHANG Weidong,XU Shuanhai,et al. Experimental study on heat transfer performance of double U-shaped buried tube heat exchanger[J]. Coal Geology & Exploration,2023,51(4):125−132. doi: 10.12363/issn.1001-1986.22.09.0701
Citation: LI Lei,ZHANG Weidong,XU Shuanhai,et al. Experimental study on heat transfer performance of double U-shaped buried tube heat exchanger[J]. Coal Geology & Exploration,2023,51(4):125−132. doi: 10.12363/issn.1001-1986.22.09.0701

双U型地埋管换热器换热性能试验研究

doi: 10.12363/issn.1001-1986.22.09.0701
基金项目: 陕西省重点研发计划项目(2021ZDLSF05-12);中煤科工集团西安研究院有限公司科技创新基金项目(2021XAYKF01)
详细信息
    第一作者:

    李磊,1996年生,男,陕西西安人,硕士研究生,从事浅层地热能开发利用方向研究. E-mail:1332084379@qq.com

    通信作者:

    徐拴海,1963年生,男,陕西宝鸡人,博士,研究员,从事工程地质、水文地质、地热能开发等方向研究. E-mail:xushuanhai@cctegxian.com

  • 中图分类号: TU83

Experimental study on heat transfer performance of double U-shaped buried tube heat exchanger

  • 摘要: 双U型地埋管换热器(DUBTHE)在实际应用中易出现管路交叉,引起热短路,造成换热性能降低,直接影响浅层地源热泵系统的运行效率。以西安某浅层地源热泵项目为工程背景,基于无限长线热源理论和斜率法,通过现场岩土热响应试验、不同测温法测温试验,研究了岩土初始平均温度、导热系数和体积热容,及管卡间距对DUBTHE换热性能的影响。结果表明:多点式测温线缆测得的岩土初始平均温度为17.08℃,更接近实际地层温度。该地层的岩土综合导热系数和综合体积热容分别为1.65 W/(m·K)、2.81×106 J/(m3·K)。DN25 DUBTHE的夏、冬季单位延米换热量随着管卡间距减小而增加,且增速随管卡间距的减小先增大后减小。当管卡间距分别为1、2、3、4 m时,DN25 DUBTHE的夏季单位延米换热量较无管卡分别提高了21.03%、19.48%、15.16%、3.92%;DN25 DUBTHE的冬季单位延米换热量较无管卡分别提高了20.83%、19.48%、14.94%、3.79%。工程中最优的管卡布置方式为2 m或3 m管卡间距的DN25 DUBTHE。研究结果可为关中地区浅层地源热泵系统的优化设计提供经验借鉴与数据支撑。

     

  • 图  管卡

    Fig. 1  Tube clamp

    图  双U型地理管换热器示意

    Fig. 2  DUBTHE

    图  岩土热响应测试仪及多点式测温线缆装置

    Fig. 3  Thermal response tester and multi-point temperature measurement cable device for rock-soil

    图  地埋管出水温度随时间变化曲线

    Fig. 4  Curve of outlet water temperature of buried tube changing with time

    图  岩土体日常温度随深度变化曲线

    Fig. 5  Curve of rock-soil daily temperature changing with depth

    图  地埋管周围岩土体温度随深度变化曲线

    Fig. 6  Curve of rock-soil temperature surrounding buried tube changing with depth

    图  试验孔的地埋管进出水温度随时间变化曲线

    Fig. 7  Curve of inlet and outlet water temperature of buried tube in test holes changing with time

    图  平均温度−时间对数拟合直线

    Fig. 8  Fitting straight line of average temperature-time logarithm

    图  试验孔单位延米换热量变化曲线

    Fig. 9  Change curve of heat exchange per linear meter of test holes

    表  1  场地地层野外特征

    Table  1  Field characteristics of site strata

    地层编号岩性岩性描述底层深度/m层厚/m
    1黄土黄褐色,硬,土质均匀,具虫孔,针孔状构造,含蜗牛壳,有光泽5.55.5
    2粉质黏土黄褐色,黏性较强,含氧化铁及钙质结核,夹薄层中砂52.747.2
    3中砂灰色,密实,以石英、长石为主,级配良好,含圆砾59.36.6
    4粉质黏土灰色,黏性较强,含氧化铁及钙质结核,夹薄层中砂103.344.0
    5中砂灰色,密实,含石英、长石及圆砾,夹薄层粉质黏土112.59.2
    6粉质黏土灰色,黏性较强,含氧化铁,局部含个别结核120.88.3
    7中砂灰色,密实,以石英、长石为主,级配良好,局部含圆砾130.49.6
    8粉质黏土灰色,黏性较强,含氧化铁,局部含个别结核152.021.6
    下载: 导出CSV

    表  2  试验孔基本参数

    Table  2  Basic parameters of test holes

    试验孔
    编号
    管卡间距
    D1/m
    管材及地埋管
    类型
    有效埋管
    深度/m
    回填材料
    SY1无管卡HDPE,
    DN25
    双U型,
    并联连接
    152河沙+原浆
    SY21
    SY32
    SY43
    SY54原浆
    下载: 导出CSV

    表  3  试验孔参数设置

    Table  3  Parameters setting of test holes

    试验孔
    编号
    管卡间距
    D1/m
    设计间距
    L/m
    制冷工况传热介质
    平均温度ts/℃
    供热工况传热介质
    平均温度tw/℃
    制冷季运行
    份额Fw/%
    制冷季运行
    时间份额Fw1/%
    供热季运行
    份额Fs/%
    供热季运行
    时间份额Fs2/%
    短期运行
    时间/h
    SY10532.57.523.8133.4321.8433.158
    SY21
    SY32
    SY43
    SY54
    下载: 导出CSV

    表  4  试验孔测试数据

    Table  4  Testing data of test holes

    试验孔
    编号
    循环流量V/(m3·h−1)进水平均温度tin/℃出水平均温度tout/℃加热功率P/W
    SY11.4134.7829.847789
    SY21.4133.0828.167875
    SY31.4332.8527.987892
    SY41.4233.6028.587867
    SY51.4234.1429.117989
    下载: 导出CSV

    表  5  岩土综合热物性参数

    Table  5  Parameter of comprehensive thermal properties of rock-soil

    试验孔
    编号
    拟合关系式综合导热
    系数/(W·m−1·K−1)
    综合体积
    热容/( J·m−3·K−1)
    SY1y=2.24217x+15.514821.821.98×106
    SY2y=2.52944x+11.828211.632.79×106
    SY3y=2.75851x+9.921161.503.91×106
    SY4y=2.45785x+12.821241.682.84×106
    SY5y=2.54067x+12.743081.652.80×106
    下载: 导出CSV

    表  6  试验孔单位延米换热量

    Table  6  Heat exchange per linear meter of test holes

    试验孔编号夏季单位延米换
    热量QS/( W·m−1)
    冬季单位延米换
    热量Qw/( W·m−1)
    SY146.4529.57
    SY256.2235.73
    SY355.5035.33
    SY453.4933.99
    SY548.2730.69
    下载: 导出CSV
  • [1] SHAH A,KRARTI M,HUANG J. Energy performance evaluation of shallow ground source heat pumps for residential buildings[J]. Energies,2022,15(3):1025.. doi: 10.3390/en15031025
    [2] LI Zhongjian,ZHENG Maoyu. Development of a numerical model for the simulation of vertical U−tube ground heat exchangers[J]. Applied Thermal Engineering,2009,29:920−924.. doi: 10.1016/j.applthermaleng.2008.04.024
    [3] BEIER R A. Transient heat transfer in a U−tube borehole heat exchanger[J]. Applied Thermal Engineering,2014,62:256−266.. doi: 10.1016/j.applthermaleng.2013.09.014
    [4] KERME E D,FUNG A S. Comprehensive simulation based thermal performance comparison between single and double U–tube borehole heat exchanger and sensitivity analysis[J]. Energy & Buildings,2021,241:110876.
    [5] 杨卫波. 土壤源热泵技术及应用[M]. 北京: 化学工业出版社, 2015.
    [6] 杨培志,陈嘉鹏,陈君文,等. 双U型地埋管换热器换热性能模拟分析[J]. 中南大学学报(自然科学版),2021,52(6):1733−1738.

    YANG Peizhi,CHEN Jiapeng,CHEN Junwen,et al. Simulation and analysis of heat transfer performance of double U−tube ground heat exchangers[J]. Journal of Central South University (Science and Technology),2021,52(6):1733−1738.
    [7] 邓军涛,张继文,郑建国,等. 不同形式和管径的地埋管换热器换热性能分析[J]. 太阳能学报,2015,36(11):2590−2596.

    DENG Juntao,ZHANG Jiwen,ZHENG Jianguo,et al. Analysis on thermal performance of different type and diameter ground heat exchanger[J]. Acta Energiae Solaris Sinica,2015,36(11):2590−2596.
    [8] 邓军涛,王娟娟,郑建国. 不同管径和埋深地埋管换热器换热性能分析[J]. 太阳能学报,2021,42(9):416−421.. doi: 10.19912/j.0254-0096.tynxb.2019-0890

    DENG Juntao,WANG Juanjuan,ZHENG Jianguo. Analysis on thermal performance of ground heat exchanger with various diameters and depths[J]. Acta Energiae Solaris Sinica,2021,42(9):416−421.. doi: 10.19912/j.0254-0096.tynxb.2019-0890
    [9] FLORIDES G A,CHRISTODOULIDES P,POULOUPATIS P. Single and double U−tube ground heat exchangers in multiple−layer substrates[J]. Applied Energy,2013,102:364−373.. doi: 10.1016/j.apenergy.2012.07.035
    [10] 沈国民,张虹. 竖直U型埋管地热换热器热短路现象的影响参数分析[J]. 太阳能学报,2007,28(6):604−607.. doi: 10.3321/j.issn:0254-0096.2007.06.007

    SHEN Guomin,ZHANG Hong. Parametric analysis of thermal interference in vertical U−tube heat exchangers for GCHP[J]. Acta Energiae Solaris Sinica,2007,28(6):604−607.. doi: 10.3321/j.issn:0254-0096.2007.06.007
    [11] PU Liang,XU Lingling,QI Di,et al. Structure optimization for horizontal ground heat exchanger[J]. Applied Thermal Engineering,2018,136:131−140.. doi: 10.1016/j.applthermaleng.2018.02.101
    [12] PU Liang,XU Lingling,QI Di,et al. A novel tree–shaped ground heat exchanger for GSHPs in severely cold regions[J]. Applied Thermal Engineering,2019,146:278−287.. doi: 10.1016/j.applthermaleng.2018.09.111
    [13] JAHANBIN A. Thermal performance of the vertical ground heat exchanger with a novel elliptical single U–tube[J]. Geothermics,2020,86:101804.. doi: 10.1016/j.geothermics.2020.101804
    [14] LI Xinguo,CHEN Yan,CHEN Zhihao,et al. Thermal performances of different types of underground heat exchangers[J]. Energy and Buildings,2006,38(5):543−547.. doi: 10.1016/j.enbuild.2005.09.002
    [15] 穆玄,裴鹏,周鑫,等. 岩溶构造对地埋管群换热效率影响数值模拟研究[J]. 煤田地质与勘探,2022,50(10):131−139.. doi: 10.12363/issn.1001-1986.21.09.0513

    MU Xuan,PEI Peng,ZHOU Xin,et al. Numerical simulation of the influence of karst structure on heat transfer efficiency of buried pipeline group[J]. Coal Geology & Exploration,2022,50(10):131−139.. doi: 10.12363/issn.1001-1986.21.09.0513
    [16] 李娟,郑佳,雷晓东,等. 地质条件及埋管形式对地埋管换热器换热性能影响研究[J]. 地球学报,2023,44(1):221−229.. doi: 10.3975/cagsb.2022.092602

    LI Juan,ZHENG Jia,LEI Xiaodong,et al. Study on the influence of geological conditions and heat exchanger type on BHE thermal performance[J]. Acta Geoscientica Sinica,2023,44(1):221−229.. doi: 10.3975/cagsb.2022.092602
    [17] SCHIBUOLA L,SCARPA M. Ground source heat pumps in high humidity soils:An experimental analysis[J]. Applied Thermal Engineering,2016,99:80−91.. doi: 10.1016/j.applthermaleng.2016.01.040
    [18] LI Wenxin,LI Xiangdong,PENG Yuanling,et al. Experimental and numerical studies on the thermal performance of ground heat exchangers in a layered subsurface with groundwater[J]. Renewable Energy,2020,147:620−629.. doi: 10.1016/j.renene.2019.09.008
    [19] 朱红梅. 基于双U型地埋管的岩土热响应试验数据处理分析研究[D]. 西安: 西安建筑科技大学, 2014.

    ZHU Hongmei. Study on the insitu soil thermal response test data processing methods of double U–tube BHE[D]. Xi’an: Xi’an University of Architecture and Technology, 2014.
    [20] GEHLIN S. Thermal response test: Method development and evaluation[D]. Lulea: Lulea University of Technology, 2002.
    [21] YOON S,KIM M J. Prediction of ground thermal diffusivity from thermal response tests[J]. Energy and Buildings,2019,185:239−246.. doi: 10.1016/j.enbuild.2018.12.027
    [22] American Society of Heating, Refrigerating and Air–conditioning Engineers. 2007 ASHRAE Handbook–HVAC applications (SI)[M]. New York: Stephen Comstock, 2007.
    [23] SPITLER J D,GEHLIN S E A. Thermal response testing for ground source heat pump systems:An historical review[J]. Renewable and Sustainable Energy Reviews,2015,50:1125−1137.. doi: 10.1016/j.rser.2015.05.061
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  21
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-18
  • 修回日期:  2023-02-08
  • 刊出日期:  2023-04-25
  • 网络出版日期:  2023-04-12

目录

    /

    返回文章
    返回