Mechanical property evaluation of coal bed and favorable area prediction of coalbed methane (CBM) development based on well logging: A case study of No. 3 coal bed in Zhengzhuang Block, southern Qinshui Basin
-
摘要: 准确掌握煤岩力学性质对储层改造及煤层气开发具有重要意义,以郑庄区块3号煤层为研究层位,建立以多测井参数为基础的煤储层横波时差预测模型和以动静态力学参数转换为依据的脆性指数评价模型;利用弹性参数法对研究区内煤储层脆性指数进行了综合评价,发现单井中煤层脆性指数受“边界效应”影响明显且分布具有区域性;脆性指数与煤体结构指数存在正相关关系,并据此提出以脆性指数为依据的煤体结构划分标准;脆性指数与抗压强度、抗拉强度均为负相关关系;四维地震裂缝监测结果显示碎裂结构煤压裂效果最好,原生结构煤次之,碎粒结构煤最差;最后,以含气量与脆性指数为主要评价参数,预测了区块内煤层气开发地质有利区,为煤储层压裂设计提供了依据。Abstract: Accurately grasping the mechanical properties of coal is of great significance to reservoir reconstruction and CBM development. Herein, the prediction model of shear wave time difference in coal reservoir based on multiple logging parameters and the brittleness index evaluation model based on dynamic and static mechanical parameter conversion were established for the research horizon of No.3 coal bed in Zhengzhuang Block. The brittleness index of coal reservoir in the study area was comprehensively evaluated by elastic parameter method. By this way, it is found that the brittleness index of coal bed in single well is obviously affected by “boundary effect” and in regional distribution. Besides, the brittleness index is positively correlated to the coal structure index, and put forward the classification standard of coal structure based on brittleness index. The brittleness index is negatively correlated with the compressive and tensile strength. In addition, the results of four-dimensional seismic fracture monitoring show that the coal in cataclastic structure has the best fracturing effect, followed by the coal in primary structure and granulitic structure successively. Finally, the favorable area of CBM development in the block was predicted with gas content and brittleness index as the main evaluation parameters, which provides a basis for the fracturing design of coal reservoir.
-
图 1 郑庄区块构造地质与地层综合柱状图[20]
Fig. 1 Structural geology and composite stratigraphic histogram of Zhengzhuang Block
表 1 煤层DTS与常规测井响应相关性绝对值参数
Table 1 Absolute value parameters of correlation between DTS and conventional well logging response of coal bed
测井参数 DTC CAL CNL DEN GR DTS 0.802 0.452 0.716 0.751 0.664 表 2 脆性指数与煤体结构分类
Table 2 Brittleness index and coal structure classification
煤体结构 CSI 脆性指数B 脆性指数分类 原生结构煤 <40 [0,47) Ⅰ型 碎裂煤 40~65 [47,60] Ⅱ型 碎粒煤 (60,74] Ⅲ型 糜棱煤 >65 [74,100] Ⅳ型 表 3 煤体结构分类结果验证
Table 3 Verification of coal structure classification results
样品编号 深度/m CSI 脆性指数B 煤体结构类型 煤心图片 S31-3 603.14~603.47 61.53 59.38 Ⅱ型 S39-3 995.41~995.92 69.12 85.85 Ⅳ型 S66-4 1075.62~1076.11 15.52 39.77 I型 S97-1 1259.60~1260.05 52.82 67.21 Ⅲ型 S97-3 1260.60 ~ 1261.05 30.07 42.85 I型 表 4 郑庄区块3号煤层水力压裂裂缝监测统计
Table 4 Hydraulic fracture monitoring of No.3 coal bed in Zhengzhuang Block
井号 脆性指数均值 总长/m 缝高/m 方位/(°) S30 65.9 152.0 6.7 北东56.2 S64 35.4 170.7 6.7 北东81.8 S73 41.9 197.7 6.6 北东70.0 S76 61.4 187.8 7.4 北东56.1 S78 68.3 160.0 10.7 北东64.7 S80 51.2 216.7 6.8 北东49.6 S83 47.0 197.9 7.5 北东64.5 S86 49.9 202.7 6.5 北东54.5 S91 52.0 181.4 7.5 北东60.2 S94 48.7 212.4 9.0 北东55.0 S97 57.1 220.9 5.7 北东42.0 S100 65.4 178.0 6.7 北西85.0 表 5 郑庄区块3号煤层气开发地质评价参数及评价标准
Table 5 Geological prediction parameters and evaluation criterion for CBM development of No. 3 coal bed in Zhengzhuang Block
参数 权重 划分指标 评价指数 脆性指数 0.6 <45 60 45~60 90 >60 30 含气量/(m3·t−1) 0.4 <15 30 15~23 60 >23 90 -
[1] 琚宜文,乔鹏,卫明明,等. 区域构造与演化控制下煤层气富集高产典型模式[J]. 煤田地质与勘探,2022,50(9):1−12.. doi: 10.12363/issn.1001-1986.22.01.0059JU Yiwen,QIAO Peng,WEI Mingming,et al. Typical coalbed methane (CBM) enrichment and production modes under the control of regional structure and evolution[J]. Coal Geology & Exploration,2022,50(9):1−12.. doi: 10.12363/issn.1001-1986.22.01.0059 [2] 门相勇,韩征,宫厚健,等. 新形势下中国煤层气勘探开发面临的挑战与机遇[J]. 天然气工业,2018,38(9):10−16.. doi: 10.3787/j.issn.1000-0976.2018.09.002MEN Xiangyong,HAN Zheng,GONG Houjian,et al. Challenges and opportunities of CBM exploration and development in China under new situations[J]. Natural Gas Industry,2018,38(9):10−16.. doi: 10.3787/j.issn.1000-0976.2018.09.002 [3] 刘大锰,周三栋,蔡益栋,等. 地应力对煤储层渗透性影响及其控制机理研究[J]. 煤炭科学技术,2017,45(6):1−8.. doi: 10.13199/j.cnki.cst.2017.06.001LIU Dameng,ZHOU Sandong,CAI Yidong,et al. Study on effect of geo–stress on coal permeability and its controlling mechanism[J]. Coal Science and Technology,2017,45(6):1−8.. doi: 10.13199/j.cnki.cst.2017.06.001 [4] 孟召平,彭苏萍,傅继彤. 含煤岩系岩石力学性质控制因素探讨[J]. 岩石力学与工程学报,2002,21(1):102−106.. doi: 10.3321/j.issn:1000-6915.2002.01.022MENG Zhaoping,PENG Suping,FU Jitong. Study on control factors of rock mechanics properties of coal−bearing formation[J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(1):102−106.. doi: 10.3321/j.issn:1000-6915.2002.01.022 [5] 张亚蒲,杨正明,鲜保安. 煤层气增产技术[J]. 特种油气藏,2006,13(1):95−98.. doi: 10.3969/j.issn.1006-6535.2006.01.029ZHANG Yapu,YANG Zhengming,XIAN Bao’an. Coal–bed gas stimulation technology[J]. Special Oil and Gas Reservoirs,2006,13(1):95−98.. doi: 10.3969/j.issn.1006-6535.2006.01.029 [6] 冯青. 煤层气井低产伤害诊断方法及应用[J]. 煤田地质与勘探,2019,47(1):86−91.. doi: 10.3969/j.issn.1001-1986.2019.01.012FENG Qing. Method and application of diagnosis of low productivity damage of CBM wells[J]. Coal Geology & Exploration,2019,47(1):86−91.. doi: 10.3969/j.issn.1001-1986.2019.01.012 [7] 张遂安,刘欣佳,温庆志,等. 煤层气增产改造技术发展现状与趋势[J]. 石油学报,2021,42(1):105−118.. doi: 10.7623/syxb202101010ZHANG Sui’an,LIU Xinjia,WEN Qingzhi,et al. Development situation and trend of stimulation and reforming technology of coalbed methane[J]. Acta Petrolei Sinica,2021,42(1):105−118.. doi: 10.7623/syxb202101010 [8] 张辰庆,许江,彭守建,等. 考虑断裂韧性影响的页岩气储层可压性评价方法[J]. 煤田地质与勘探,2019,47(5):131−137.. doi: 10.3969/j.issn.1001-1986.2019.05.018ZHANG Chenqing,XU Jiang,PENG Shoujian,et al. Evaluation method of compressibility of shale gas reservoir in consideration of the influence of fracture toughness[J]. Coal Geology & Exploration,2019,47(5):131−137.. doi: 10.3969/j.issn.1001-1986.2019.05.018 [9] 袁俊亮,邓金根,张定宇,等. 页岩气储层可压裂性评价技术[J]. 石油学报,2013,34(3):523−527.. doi: 10.7623/syxb201303015YUAN Junliang,DENG Jingen,ZHANG Dingyu,et al. Fracability evaluation of shale–gas reservoirs[J]. Acta Petrolei Sinica,2013,34(3):523−527.. doi: 10.7623/syxb201303015 [10] 申卫兵,张保平. 不同煤阶煤岩力学参数测试[J]. 岩石力学与工程学报,2000,19(增刊1):860−862.SHEN Weibing,ZHANG Baoping. Testing study on mechanical parameters of coal[J]. Chinese Journal of Rock Mechanics and Engineering,2000,19(Sup.1):860−862. [11] 杨永杰,宋扬,陈绍杰. 三轴压缩煤岩强度及变形特征的试验研究[J]. 煤炭学报,2006,31(2):150−153.. doi: 10.3321/j.issn:0253-9993.2006.02.004YANG Yongjie,SONG Yang,CHEN Shaojie. Test study of coal’s strength and deformation characteristics under triaxial compression[J]. Journal of China Coal Society,2006,31(2):150−153.. doi: 10.3321/j.issn:0253-9993.2006.02.004 [12] 尤明庆. 岩样三轴压缩的破坏形式和Coulomb强度准则[J]. 地质力学学报,2002,8(2):179−185.. doi: 10.3969/j.issn.1006-6616.2002.02.008YOU Mingqing. Destroy character and coulomb criterion of rock specimen in pseudo−triaxial compression[J]. Journal of Geomechanics,2002,8(2):179−185.. doi: 10.3969/j.issn.1006-6616.2002.02.008 [13] 李小春,白冰,唐礼忠,等. 较低和较高围压下煤岩三轴试验及其塑性特征新表述[J]. 岩土力学,2010,31(3):677−682.. doi: 10.3969/j.issn.1000-7598.2010.03.002LI Xiaochun,BAI Bing,TANG Lizhong,et al. Triaxial tests of coal under low and high confining pressures and its plastic characteristics description[J]. Rock and Soil Mechanics,2010,31(3):677−682.. doi: 10.3969/j.issn.1000-7598.2010.03.002 [14] ZHANG Bo,ZHAO Tao,JIN Xiaochun,et al. Brittleness evaluation of resource plays by integrating petrophysical and seismic data analysis[J]. Interpretation,2015,3(2):T81−T92.. doi: 10.1190/INT-2014-0144.1 [15] 孟召平,张吉昌,TIEDEMANN J. 煤系岩石物理力学参数与声波速度之间的关系[J]. 地球物理学报,2006,49(5):1505−1510.. doi: 10.3321/j.issn:0001-5733.2006.05.031MENG Zhaoping,ZHANG Jichang,TIEDEMANN J. Relationship between physical and mechanical parameters and acoustic wave velocity of coal measures rocks[J]. Chinese Journal of Geophysics,2006,49(5):1505−1510.. doi: 10.3321/j.issn:0001-5733.2006.05.031 [16] 梁豪. 页岩储层岩石脆性破裂机理及评价方法[D]. 成都: 西南石油大学, 2014.LIANG Hao. Brittle fracture mechanism and evaluation method of shale reservoir rock[D]. Chengdu: Southwest Petroleum University, 2014. [17] 艾林,周明顺,张杰,等. 基于煤岩脆性指数的煤体结构测井定量判识[J]. 岩性油气藏,2017,29(2):139−144.. doi: 10.3969/j.issn.1673-8926.2017.02.017AI Lin,ZHOU Mingshun,ZHANG Jie,et al. Quantitative identification of coal structure based on coal rock brittleness index by logging data[J]. Lithologic Reservoirs,2017,29(2):139−144.. doi: 10.3969/j.issn.1673-8926.2017.02.017 [18] 陈东锐,王延斌,韩文龙,等. 基于常规测井资料计算煤层力学参数[J]. 云南化工,2020,47(6):135−136.. doi: 10.3969/j.issn.1004-275X.2020.06.051CHEN Dongrui,WANG Yanbin,HAN Wenlong,et al. Calculating mechanics parameters of coal seam based on conventional logging data[J]. Yunnan Chemical Technology,2020,47(6):135−136.. doi: 10.3969/j.issn.1004-275X.2020.06.051 [19] 张杰,范立红,梅杰,等. 测井技术在樊庄地区煤岩结构识别中的应用[J]. 中国煤层气,2017,14(3):12−16.ZHANG Jie,FAN Lihong,MEI Jie,et al. Application of logging technology in recognizing coal structure in Fanzhuang Area[J]. China Coalbed Methane,2017,14(3):12−16. [20] WANG Yingjin,LIU Dameng,CAI Yidong,et al. Constraining coalbed methane reservoir petrophysical and mechanical properties through a new coal structure index in the Southern Qinshui Basin,Northern China:Implications for hydraulic fracturing[J]. AAPG Bulletin,2020,104(8):1817−1842.. doi: 10.1306/02282018110 [21] 熊晓军,林凯,贺振华. 基于等效弹性模量反演的横波速度预测方法[J]. 石油地球物理勘探,2012,47(5):723−727.. doi: 10.13810/j.cnki.issn.1000-7210.2012.05.007XIONG Xiaojun,LIN Kai,HE Zhenhua. A method for S–wave velocity estimation based on equivalent elastic modulus inversion[J]. Oil Geophysical Prospecting,2012,47(5):723−727.. doi: 10.13810/j.cnki.issn.1000-7210.2012.05.007 [22] 刘志强. 煤层地应力预测方法研究: 以郑庄煤层气区块为例[D]. 北京: 中国地质大学(北京), 2014.LIU Zhiqiang. Method of estimating in−situ stresses: A case study of Zhengzhuang coalbed methane field[D]. Beijing: China University of Geosciences (Beijing), 2014. [23] 杨秀春,张继坤,周科. 鄂东气田韩城矿区煤层横波时差测井曲线的构建方法[J]. 测井技术,2014,38(3):304−308.YANG Xiuchun,ZHANG Jikun,ZHOU Ke. Study on establishing method of shear wave logging curves for coalbed in Eastern Block of Ordos Basin[J]. Well Logging Technology,2014,38(3):304−308. [24] 刘卫国,韩登宇,苗文韬,等. 利用地球物理测井数据计算新疆托克逊县白嘴山地区岩石力学参数的方法探讨[J]. 铀矿地质,2013,29(5):310−314.. doi: 10.3969/j.issn.1000-0658.2013.05.009LIU Weiguo,HAN Dengyu,MIAO Wentao,et al. Discussion on the calculation of mechanical parameters of rocks with geophysical logging data in Baizuishan Region,Tuokexun,Xinjiang[J]. Uranium Geology,2013,29(5):310−314.. doi: 10.3969/j.issn.1000-0658.2013.05.009 [25] 单钰铭,刘维国. 地层条件下岩石动静力学参数的实验研究[J]. 成都理工学院学报,2000,27(3):249−254.SHAN Yuming,LIU Weiguo. Experimental study on dynamic and static mechanics parameters of rocks under formation conditions[J]. Journal of Chengdu University of Technology,2000,27(3):249−254. [26] 蒋东峰. 基于损伤理论的演示脆性评价方法研究[D]. 大庆: 东北石油大学, 2016.JIANG Dongfeng. Research on brittleness evaluation of rock based on damage theory[D]. Daqing: Northeast Petroleum University, 2016. [27] 李邵军,匡智浩,邱士利,等. 岩石脆性评价方法研究进展及适应性探讨[J]. 工程地质学报,2022,30(1):59−70.LI Shaojun,KUANG Zhihao,QIU Shili,et al. Review of rock brittleness evaluation methods and discussion on their adaptabilities[J]. Journal of Engineering Geology,2022,30(1):59−70. [28] 刘晓辉,郑钰,郝齐钧,等. 基于特征应力的准静态三轴煤岩脆性特征分析[J]. 岩石力学与工程学报,2021,40(12):2454−2465.. doi: 10.13722/j.cnki.jrme.2021.0278LIU Xiaohui,ZHENG Yu,HAO Qijun,et al. Brittleness characteristics of quasi–static triaxial coal rock based on characteristic stress[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(12):2454−2465.. doi: 10.13722/j.cnki.jrme.2021.0278 [29] JARVIE D M,HILL R J,RUBLE T E. Unconventional shale−gas systems:The Mississippian Barnett Shale of north−central Texas as one model for thermogenic shale−gas assessment[J]. AAPG Bulletin,2007,91(4):475−499.. doi: 10.1306/12190606068 [30] RICKMAN R, MULLEN M, PETRE E, et al. A practical use of shale petrophysics for stimulation design optimization[C]//All shale plays are not clones of the Barnett shale. Denver: SPE Annual Technical Conference & Exhibition, 2008. [31] 熊德国,赵忠明,苏承东,等. 饱水对煤系地层岩石力学性质影响的试验研究[J]. 岩石力学与工程学报,2011,30(5):998−1006.XIONG Deguo,ZHAO Zhongming,SU Chengdong,et al. Experimental study of effect of water–saturated state on mechanical properties of rock in coal measure strata[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(5):998−1006. [32] ARASH D T,OLSON J E. How natural fractures could affect hydraulic−fracture geometry[J]. SPE Journal,2013,19(1):161−171. [33] 姚艳斌,王辉,杨延辉,等. 煤层气储层可改造性评价:以郑庄区块为例[J]. 煤田地质与勘探,2021,49(1):119−129.. doi: 10.3969/j.issn.1001-1986.2021.01.012YAO Yanbin,WANG Hui,YANG Yanhui,et al. Evaluation of the hydro–fracturing potential for coalbed methane reservoir:A case study of Zhengzhuang CBM field[J]. Coal Geology & Exploration,2021,49(1):119−129.. doi: 10.3969/j.issn.1001-1986.2021.01.012 [34] 向文鑫,桑树勋,吴章利,等. 贵州省煤层气规划区块煤储层特征与有利区优选[J]. 煤田地质与勘探,2022,50(3):156−164.. doi: 10.12363/issn.1001-1986.21.12.0731XIANG Wenxin,SANG Shuxun,WU Zhangli,et al. Characteristics of coal reservoirs and favorable areas classification and optimization of CBM planning blocks in Guizhou Province[J]. Coal Geology & Exploration,2022,50(3):156−164.. doi: 10.12363/issn.1001-1986.21.12.0731 -