A preliminary evaluation method for coal-based graphite
-
摘要: 煤系石墨属战略性矿产资源,在核石墨、军用飞机轮胎等方面具有独特优势,煤系石墨矿产资源评价对于煤系石墨矿产资源勘查开发、提级增储及战略资源保障至关重要 。由于煤系石墨与高变质煤存在连续过渡性质,导致部分煤系石墨被当作无烟煤处理,现有煤系石墨查明资源量可能被大大低估,实际上煤系石墨资源量与高煤级煤的资源量有直接关系。因此,在我国无烟煤等高煤级煤勘查区内,开展煤系石墨资源调查评价工作,将会取得较好效果,预期发现一批新的煤系石墨资源潜力区。通过分析我国目前已知的湖南、福建、吉林等地典型煤系石墨资源分布特征,总结了煤系石墨找矿标志,包括层位、矿化、岩体、构造和围岩蚀变等标志。在高煤级煤勘查区内,基于煤田构造、含煤岩系沉积环境、岩浆活动、煤岩煤质特征、煤类分布与变质情况等资料,结合煤系石墨找矿标志,进行煤系石墨资源调查评价。以科学性、系统性和可操作性为评价原则,依据工作程度、地质条件、矿产条件3类参数,采样点密度、构造变形程度、构造应力、岩体规模与热作用强度、岩体与煤层距离、初步鉴定、精确鉴定7个指标,初步提出了煤系石墨矿产资源评价方法。将实测数据分别与对应指标的预设值比较,利用平面直线拟合方程计算指数特征值,依据7个评价指标及权重对煤系石墨矿产资源进行评价,以期为我国煤系石墨资源评价工作提供科学依据。以闽西南龙岩−永定煤田漳平可坑矿区为例进行煤系石墨资源评价,其煤系石墨资源评估值为(A1, A2, A3)=(0.735, 0.793, 0.838),表明本研究区工作程度较好,地质条件较好,开采难度较小,矿产条件为煤系石墨一号,建议进一步加密采样点,布置资源勘查工作。Abstract: Coal-based graphite is a type of strategic mineral resource and has unique advantages in the fields such as nuclear graphite and military aircraft tires. The evaluation of coal-based graphite is crucial to its exploration and development, upgrading and storage increase, and strategic resource security. Owing to the continuous transition between coal-based graphite and highly metamorphosed coals, some coal-based graphite tends to be wrongly treated as blind coal, and, accordingly, the identified resources of existing coal-based graphite may have been greatly underestimated. In fact, the resources of coal-based graphite are directly related to those of high-rank coals. Therefore, it is significant to survey and evaluate coal-based graphite in the exploration areas of high-rank coals (e.g., blind coal) in the expectation of discovering new areas with potential for coal-based graphite. By analyzing the distribution of typical coal-based graphite resources in Hunan, Fujian, and Jilin in China, this study summarized the prospecting indicators of coal-based graphite, including horizons, mineralization, rock masses, structures, and wall rock alteration. Based on data on coal field structures, the sedimentary environment of coal-bearing strata, magmatic activity, characteristics of coal petrology and coal quality, and coal distribution and metamorphism, as well as the prospecting indicators of coal-based graphite, this study surveyed and evaluated these typical coal-based graphite resources. Accordingly, on the evaluation principle of scientificity, systematicness, and operability, this study proposed a preliminary evaluation method for coal-based graphite based on three parameters, namely exploration level, geological conditions, and mineral conditions, and seven indicators, namely sampling point density, the degree of tectonic deformation, tectonic stress, rock mass scale and thermal action intensity, the distance between rock masses and coal seams, basic identification, and precise identification. In this method, the measured data are compared with the preset values of the corresponding indicators first, then the characteristic values of the indicators are calculated using a fitting equation for planar straight lines, and finally, coal-based graphite is evaluated based on the seven evaluation indicators and their weights. The purpose is to provide a scientific basis for the evaluation of coal-based graphite resources in China. Using the proposed evaluation method, this study evaluated the coal-based graphite resources in the Kekeng mining area in Zhangping, Longyan Yongding coalfield, southwest Fujian, determining an evaluation value of (A1, A2, A3) = (0.735,0.793,0.838). This value indicates that the Kekeng mining area has a high exploration level, favorable geological conditions, minor difficulties with mining, and mineral condition of coal-based graphite No. 1. It is recommended to further densify sampling points and deploy resource exploration.
-
表 1 我国煤系石墨成矿区带划分(据文献[18-19],修改)
Table 1 Division scheme of the metallogenic zones of coal-based graphite in China (modified after references [18-19])
成矿域 成矿带 主要矿区 成矿条件 I滨太平洋成矿域 (1) 黑吉东部成矿带 神树石墨矿区、
尚志石墨矿区、
仙人洞石墨矿含矿层位主要为二叠系土门岭组、三叠系大酱缸组,印支期花岗闪长岩侵位,发生接触变质作用,位于滨绥断裂两侧。燕山期仙人洞岩体为热源,矿层发育于褶皱一翼,小兴安岭–张广才岭构造–岩浆岩带形成有利的封闭式成矿条件。典型矿区为铁力一带石墨矿床、矿(化)点,含矿岩石为石墨质板岩,石墨为煤层变质型土状石墨,固定碳含量50%~60%[20] (2) 闽西南成矿带 漳平可坑矿区、
乌坑矿区、
大田溪洋矿区含矿层位主要为二叠系龙潭组,燕山期大规模岩浆侵入,永安–晋江断裂和政和–大埔断裂成为有利成矿构造条件,闽浙火山岩带西侧形成多处煤系石墨产地。典型矿区为漳平可坑、乌坑、大田溪洋,漳平可坑石墨矿位于政和−大浦断裂带西侧4.7 km,印支末期−燕山早期,政和−大浦断裂带形成对冲式的逆冲推覆构造,使得中部含煤带煤系变形强烈,石墨矿层呈鳞片状、透镜状或鼓包状产出[21-22] II阴山−燕山
成矿域(3) 巴彦淖尔成矿带 乌拉特中旗乌
不浪口石墨矿含矿层位为下二叠系大红山组,遭受华力西晚期的岩浆活动,使得地层中的碳受高温作用而形成石墨。典型矿区为乌拉特中旗乌不浪口,共圈定石墨矿体5条,矿石固定碳含量较高,含量为65.22%~75.22%[23] (4) 京西成矿带 南安河石墨矿、
房山车厂石墨矿含矿层位为石炭–二叠纪煤层,房山、独山、青龙涧等小型侵入体为热源,靠近岩体附近的煤发生石墨化。典型矿区为南安河和房山车厂各有一小型接触变质型石墨矿床,南安河石墨矿固定碳含量为 12.17%,车厂石墨矿的矿石固定碳含量为 6.62%~71.50%,平均 29.22%,因质量较差,基本无工业价值[24] (5) 通辽成矿带 扎鲁特旗忙哈吐
矿区、敖包营子
矿区、板子庙
矿区 、查干诺尔
矿区含矿层位为下侏罗统红旗组,燕山期构造–岩浆活动频繁,强度较高,受苏尼特右旗褶皱带影响,形成有利的构造成矿条件。典型矿区为扎鲁特旗忙哈吐、敖包营子,从接触带向外渐次出现石墨—半石墨—无烟煤的渐变过渡带,矿体呈层状、似层状、带状及透镜状分布,长度几百米至数千米,矿石固定碳含量60%~80%[25] III秦岭−大别山成矿域 (6) 北秦岭成矿带 凤县岩湾石墨矿、
铜峪石墨矿、
桑园坝石墨矿含矿层位为石炭系草凉驿组,燕山期侵入太白山、天台山等岩体,东西向断裂、南北向挤压多期次构造活动,褶皱核部转折端为矿层富集区。典型矿区为陕西凤县贯沟–老厂–煤沟一带,东部(老厂至贯沟)矿体多、矿石质量较好,固定碳含量一般为 68%~89%[26],石墨矿层靠近岩体厚度大(>1.4 m),远离岩体厚度减薄(0.4 m) (7) 北淮阳成矿带 马鞍山矿区 含矿层位为石炭系杨山组,燕山期侵入商城、铁冲和桃花岭岩体为煤的石墨化提供热能,大别山造山带提供有利的成矿构造条件。典型矿区为马鞍山,构造–热变质类型位于燕山期(早白垩世)商城花岗岩基旁侧剪切变形带内,马鞍山煤矿样品d002为 0.335 5~0.3394 nm,平均值 0.3368 nm,高分辨透射电镜分析呈现接近平直石墨的 SAD 衍射环[18] IV南岭成矿域 (8) 湘中湘南成矿带 寒婆坳石墨矿区、
鲁荷石墨矿区、
梅田
矿区含矿层位为石炭系测水组、二叠系龙潭组,印支–燕山期岩浆侵入骑田岭、天龙山岩体为主要热源,受 NW 向构造挤压影响,次级构造发育,形成封闭条件。典型矿区为骑田岭岩体西南的梅田矿区,岩体兜底,从三面将富炭岩层包围在中间,矿层呈复式背斜,长轴南北向,底部岩体边界与矿层相距 0~400 m,背斜轴距东西两侧岩体边界均小于 1 km,此范围内全部石墨化,滴水带石墨矿石墨化度 89.3%,固定碳含量88.51%[27-28] (9) 赣中赣南成矿带 崇义矿区、
萍乡–丰城矿区含矿层位为二叠系龙潭组,燕山期岩浆侵入活动强烈,区域性断裂带远程传热,低坑坳背斜储热盖层,褶皱翼部剪切应力集中,紧邻岩体附近煤的石墨化程度较高。典型矿区为崇义,煤系石墨样品已不同程度进入石墨化演化阶段,57个样品中有52个超过工业品位,占91%[29] (10) 粤北成矿带 连平矿区、
佛冈矿区含矿层位为二叠系龙潭组,岩体附近煤发生石墨化 V特提斯
成矿域(11) 青南乌丽成矿带 乌丽−开心岭矿区 含矿层位为上二叠统那益雄组/侏罗纪大煤沟组,中侏罗世末,羌塘地体完全拼接抬升,使中侏罗统褶皱上升,出现了较紧密的线型对称褶皱,多期断裂复活或发生,使得煤系产生断裂、揉皱。 伴随褶皱断裂活动同时发生了大规模的岩浆侵入活动,造成煤系的高变质和破坏[30] (12) 藏东昌都成矿带 马查拉矿区 含矿层位为下石炭统马查拉组,晚三叠世俄让—竹卡火成岩带内,酸性侵入岩(大规模二长花岗岩、花岗闪长岩)侵入早石炭世马查拉组及中三叠世俄让组火山岩中,造成煤系高变质[31] 表 2 煤系石墨矿产资源评价体系
Table 2 Evaluation system of coal-based graphite
条件 指标权重 指标 指数特征分类 不好[0,0.6) 好[0.6,0.8) 很好[0.8,1.0) A1工作程度 1 B1采样点密度/(点·km−2) <3 3~6 >6 A2地质条件 0.30 B2构造变形强度 简单 中等 复杂 0.20 B3构造应力/MPa <20 20~30 >30 0.30 B4岩体规模与热作用强度 岩脉、岩墙和岩床侵入,热作用时间短 酸性和中酸性岩基、岩株侵入,热量作用时间较长 大规模酸性花岗岩类或中酸性闪长岩类侵入,热量充足,作用时间长 0.20 B5岩体侵位深度 较远(>10 km) 间接接触(>3~10 km) 直接接触(1~3 km) A3矿产条件 0.40 B6基础指标 Vdaf/% >4.5~6.5 3.8~4.5 <3.8 Rmax/% 5.0~<6.5 6.5~8.0 >8.0 0.60 B7精确指标 d002/nm 0.3400~<0.3440 0.3380~<0.3400 0.3354~<0.3380 G <0.5 0.5~0.7 >0.7 R2 >0.60 0.50~0.60 <0.50 表 3 闽西南龙岩–永定煤田煤系石墨资源评价
Table 3 Evaluation of coal-based graphite in Longyan-Yongding coalfield, southwest Fujian
条件 指标权重 指标 指数特征分类 评估值 不好(0,0.6) 好[0.6,0.8) 很好[0.8,1.0) A1工作程度 1 B1采样点密度/(点·km−2) 5 0.735 A2地质条件 0.30 B2构造变形强度 0.8 0.240 0.20 B3构造应力/MPa 40 0.200 0.30 B4岩体规模与热作用强度 0.7 0.210 0.20 B5岩体侵位深度/km 7 0.143 A3矿产条件 0.20 B6基础指标 Vdaf/% 2.2 0.177 0.20 Rmax/% 8.0 0.159 0.20 B7精确指标 d002/nm 0.3362 0.172 0.20 G 0.8 0.160 0.20 R2 0.379 0.170 -
[1] 国务院. 国务院关于全国矿产资源规划(2016—2020 年)的批复: 国函〔2016〕178号[N]. 中华人民共和国国务院公报, 2016-11-08. [2] International Energy Agency. The role of critical minerals in clean energy transitions[R]. Paris: International Energy Agency, 2021. [3] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 鳞片石墨: GB/T 3518–2008[S]. 北京: 中国标准出版社, 2008. [4] 曹代勇,张鹤,董业绩,等. 煤系石墨矿产地质研究现状与重点方向[J]. 地学前缘,2017,24(5):317−327.. doi: 10.13745/j.esf.yx.2016-10-9CAO Daiyong,ZHANG He,DONG Yeji,et al. Research status and key orientation of coal–based graphite mineral geology[J]. Earth Science Frontiers,2017,24(5):317−327.. doi: 10.13745/j.esf.yx.2016-10-9 [5] 周起忠,闫卫东,尹丽文,等. 世界石墨资源概况及需求分析[J]. 国土资源情报,2019(6):28−32.ZHOU Qizhong,YAN Weidong,YIN Liwen,et al. Overview and demand analysis of global graphite resource[J]. Land and Resources Information,2019(6):28−32. [6] 左力艳,张万益,李状. 全球石墨资源产业现状分析与我国石墨行业发展建议[J]. 矿产保护与利用,2019,39(6):32−38.. doi: 10.13779/j.cnki.issn1001-0076.2019.06.006ZUO Liyan,ZHANG Wanyi,LI Zhuang. Current situation analysis of the global graphite resources industry and suggestions for China’s graphite industry development[J]. Conservation and Utilization of Mineral Resources,2019,39(6):32−38.. doi: 10.13779/j.cnki.issn1001-0076.2019.06.006 [7] 自然资源部. 中国矿产资源报告(2021)[R]. 北京: 地质出版社, 2021. [8] 孙升林,吴国强,曹代勇,等. 煤系矿产资源及其发展趋势[J]. 中国煤炭地质,2014,26(11):1−11.. doi: 10.3969/j.issn.1674-1803.2014.11.01SUN Shenglin,WU Guoqiang,CAO Daiyong,et al. Mineral resources in coal measures and development trend[J]. Coal Geology of China,2014,26(11):1−11.. doi: 10.3969/j.issn.1674-1803.2014.11.01 [9] 曹代勇,魏迎春,李阳,等. 煤系石墨鉴别指标厘定及分类分级体系构建[J]. 煤炭学报,2021,46(6):1833−1846.. doi: 10.13225/j.cnki.jccs.2021.0305CAO Daiyong,WEI Yingchun,LI Yang,et al. Determination of identification index and construction of classification and classification system of coal measures graphite[J]. Journal of China Coal Society,2021,46(6):1833−1846.. doi: 10.13225/j.cnki.jccs.2021.0305 [10] 王路. 煤系石墨的构造–热成矿机制研究[D]. 北京: 中国矿业大学(北京), 2020.WANG Lu. Study on the tectonic–thermal metallogenic mechanism of the coal–based graphite[D]. Beijing: China University of Mining & Technology (Beijing), 2020. [11] 董业绩,曹代勇,王路,等. 地质勘查阶段煤系石墨与无烟煤的划分指标探究[J]. 煤田地质与勘探,2018,46(1):8−12.. doi: 10.3969/j.issn.1001-1986.2018.01.002DONG Yeji,CAO Daiyong,WANG Lu,et al. Indicators for partitioning graphite and anthracite in coal measures during geological exploration phase[J]. Coal Geology & Exploration,2018,46(1):8−12.. doi: 10.3969/j.issn.1001-1986.2018.01.002 [12] 自然资源部. 中国矿产资源报告(2018年)[R]. 北京: 地质出版社, 2018 [13] 颜玲亚,高树学,陈正国,等. 中国石墨矿成矿特征及成矿区带划分[J]. 中国地质,2018,45(3):421−440.. doi: 10.12029/gc20180301YAN Lingya,GAO Shuxue,CHEN Zhengguo,et al. Metallogenic characteristics and metallogenic zoning of graphite deposits in China[J]. Geology in China,2018,45(3):421−440.. doi: 10.12029/gc20180301 [14] 沈毅,怀俊东,彭成龙,等. 我国石墨资源特征与差异化应用进展[J]. 矿产保护与利用,2020,40(2):171−178.SHEN Yi,HUAI Jundong,PENG Chenglong,et al. Characteristics and differentiated application progress of graphite resources[J]. Conservation and Utilization of Mineral Resources,2020,40(2):171−178. [15] 张苏江,崔立伟,张彦文,等. 国内外石墨矿产资源及其分布概述[J]. 中国矿业,2018,27(10):8−14.ZHANG Sujiang,CUI Liwei,ZHANG Yanwen,et al. Summarize on the graphite mineral resources and their distribution at home and abroad[J]. China Mining Magazine,2018,27(10):8−14. [16] 王登红,郑绵平,王成辉,等. 大宗急缺矿产和战略性新兴产业矿产调查工程进展与主要成果[J]. 中国地质调查,2019,6(6):1−11.. doi: 10.19388/j.zgdzdc.2019.06.01WANG Denghong,ZHENG Mianping,WANG Chenghui,et al. Progresses and main achievements on bulk lacking minerals and strategic emerging industry minerals survey project[J]. Geological Survey of China,2019,6(6):1−11.. doi: 10.19388/j.zgdzdc.2019.06.01 [17] 李焕同,王楠,朱志蓉,等. 湖南寒婆坳矿区热变质煤结构演化及其矿物学特征响应[J]. 地质学报,2020,94(11):3503−3514.. doi: 10.3969/j.issn.0001-5717.2020.11.022LI Huantong,WANG Nan,ZHU Zhirong,et al. Structural evolution and mineralogical characteristics of magmatic metamorphic coals in the Hanpoao Coal Mining Area,Hunan Province[J]. Acta Geologica Sinica,2020,94(11):3503−3514.. doi: 10.3969/j.issn.0001-5717.2020.11.022 [18] 曹代勇,王路,刘志飞,等. 我国煤系石墨研究及资源开发利用前景[J]. 煤田地质与勘探,2020,48(1):1−11.. doi: 10.3969/j.issn.1001-1986.2020.01.001CAO Daiyong,WANG Lu,LIU Zhifei,et al. The research status and prospect of coal–based graphite in China[J]. Coal Geology & Exploration,2020,48(1):1−11.. doi: 10.3969/j.issn.1001-1986.2020.01.001 [19] 曹代勇,王路,朱文卿,等. 关于煤系石墨鉴定标准的讨论[J]. 煤田地质与勘探,2022,50(12):105−113.. doi: 10.12363/issn.1001-1986.22.07.0527CAO Daiyong,WANG Lu,ZHU Wenqing,et al. Discussion on identification standard of coal−measure graphite[J]. Coal Geology & Exploration,2022,50(12):105−113.. doi: 10.12363/issn.1001-1986.22.07.0527 [20] 寇林林,陈江,韩仁萍,等. 东北地区石墨资源量潜力及未来发展对策探讨[J]. 地质与资源,2017,26(2):203−208.. doi: 10.3969/j.issn.1671-1947.2017.02.017KOU Linlin,CHEN Jiang,HAN Renping,et al. Graphite resources in northeast China:Potentiality and development strategy[J]. Geology and Resources,2017,26(2):203−208.. doi: 10.3969/j.issn.1671-1947.2017.02.017 [21] 陈泉霖,程乔,邓瑞锦,等. 福建煤系石墨资源状况和开发前景[J]. 煤田地质与勘探,2020,48(1):12−17.. doi: 10.3969/j.issn.1001-1986.2020.01.002CHEN Quanlin,CHENG Qiao,DENG Ruijin,et al. Status and development prospect of the coal−based graphite resources in Fujian Province[J]. Coal Geology & Exploration,2020,48(1):12−17.. doi: 10.3969/j.issn.1001-1986.2020.01.002 [22] 丁正云,曹代勇,王路,等. 福建漳平可坑矿区煤系石墨赋存规律研究[J]. 地质力学学报,2019,25(2):198−205.. doi: 10.12090/j.issn.1006-6616.2019.25.02.018DING Zhengyun,CAO Daiyong,WANG Lu,et al. Study on occurrence regularity of coal−based graphite in Kekeng Mining Area in Zhangping,Fujian Province[J]. Journal of Geomechanics,2019,25(2):198−205.. doi: 10.12090/j.issn.1006-6616.2019.25.02.018 [23] 郝智慧,苏海霞,丁禹升. 巴彦淖尔市石墨矿床地质特征及资源潜力[J]. 西部资源,2022(2):158−161.. doi: 10.3969/j.issn.1672-562X.2022.02.058HAO Zhihui,SU Haixia,DING Yusheng. Geological characteristics and resource potential of graphite deposit in Bayannur City[J]. Western Resources,2022(2):158−161.. doi: 10.3969/j.issn.1672-562X.2022.02.058 [24] 中国煤炭加工利用协会. 煤系中五种非金属矿产资源开发利用调查研究报告[R]. 北京: 中国煤炭加工利用协会, 1990. [25] 郑建勋. 内蒙古扎鲁特旗侏罗系红旗组含石墨段地质特征及矿床成因[J]. 西部资源,2018(5):16−17.. doi: 10.3969/j.issn.1672-562X.2018.05.008ZHENG Jianxun. The geological characteristics and genesis of the graphite section in the red flag Formation of the Jurassic red group in Zaluqi,Inner Mongolia[J]. Western Resources,2018(5):16−17.. doi: 10.3969/j.issn.1672-562X.2018.05.008 [26] 冯杨伟,吕录仕. 陕西凤县石炭系煤系石墨矿床地质特征及成因探讨[J]. 中国煤炭,2018,44(7):44−48.. doi: 10.3969/j.issn.1006-530X.2018.07.008FENG Yangwei,LYU Lushi. Analysis of geological characteristics and genesis of Carboniferous coal–based graphite deposit in Fengxian County,Shaanxi Province[J]. China Coal,2018,44(7):44−48.. doi: 10.3969/j.issn.1006-530X.2018.07.008 [27] 王路,彭扬文,曹代勇,等. 湖南鲁塘煤系石墨矿区构造格局及控矿机制[J]. 煤田地质与勘探,2020,48(1):48−54.. doi: 10.3969/j.issn.1001-1986.2020.01.007WANG Lu,PENG Yangwen,CAO Daiyong,et al. The tectonic framework and controlling mechanism of coal–based graphite in Lutang Mining Area,Hunan Province[J]. Coal Geology & Exploration,2020,48(1):48−54.. doi: 10.3969/j.issn.1001-1986.2020.01.007 [28] 莫佳峰,赵训林,朱文卿,等. 湖南省煤系石墨成矿规律与找矿方向探讨[J]. 煤田地质与勘探,2020,48(1):18−26.. doi: 10.3969/j.issn.1001-1986.2020.01.003MO Jiafeng,ZHAO Xunlin,ZHU Wenqing,et al. Metallogenic law and prospecting direction of coal–based graphite in Hunan Province[J]. Coal Geology & Exploration,2020,48(1):18−26.. doi: 10.3969/j.issn.1001-1986.2020.01.003 [29] 李阳,王路,曹代勇,等. 江西崇义矿煤成石墨的发现及其地质意义[J]. 煤田地质与勘探,2019,47(5):79−85.. doi: 10.3969/j.issn.1001-1986.2019.05.011LI Yang,WANG Lu,CAO Daiyong,et al. The discovery and geological significance of coal–formed graphite in Chongyi Coal Mine in Jiangxi Province[J]. Coal Geology & Exploration,2019,47(5):79−85.. doi: 10.3969/j.issn.1001-1986.2019.05.011 [30] 谭节庆,马志凯,高科飞,等. 青藏高原北部煤系赋存的板块构造控制[J]. 煤炭学报,2016,41(2):286−293.. doi: 10.13225/j.cnki.jccs.2015.6105TAN Jieqing,MA Zhikai,GAO Kefei,et al. Control effect of plate tectonics on coal measures in northern Qinghai–Tibet Plateau[J]. Journal of China Coal Society,2016,41(2):286−293.. doi: 10.13225/j.cnki.jccs.2015.6105 [31] 曹代勇,宋时雨,马志凯,等. 晚三叠世昌都盆地构造背景及对成煤作用的控制[J]. 地学前缘,2019,26(2):169−178.. doi: 10.13745/j.esf.sf.2018.12.18CAO Daiyong,SONG Shiyu,MA Zhikai,et al. Tectonic background of the Qamdo Basin and its structural control on coal forming in the Late Triassic[J]. Earth Science Frontiers,2019,26(2):169−178.. doi: 10.13745/j.esf.sf.2018.12.18 [32] 中华人民共和国自然资源部. 石墨、碎云母矿产地质勘查规范: DZ/T 0326—2018[S]. 北京: 地质出版社, 2018. [33] 宁树正,曹代勇,朱士飞,等. 煤系矿产资源综合评价技术方法探讨[J]. 中国矿业,2019,28(1):73−79.NING Shuzheng,CAO Daiyong,ZHU Shifei,et al. Discussion on comprehensive evaluation technical method of coal resources[J]. China Mining Magazine,2019,28(1):73−79. [34] 陈蔚然. 关于石墨化度计算公式[J]. 炭素技术,1983(6):28−31.. doi: 10.14078/j.cnki.1001-3741.1983.06.007CHEN Weiran. Calculation formula of graphitization degree[J]. Carbon Techniques,1983(6):28−31.. doi: 10.14078/j.cnki.1001-3741.1983.06.007 -