留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矿井电法勘探研究现状与发展趋势

岳建华 杨海燕 冉华赓

岳建华,杨海燕,冉华赓. 矿井电法勘探研究现状与发展趋势[J]. 煤田地质与勘探,2023,51(1):259−276. doi: 10.12363/issn.1001-1986.23.01.0031
引用本文: 岳建华,杨海燕,冉华赓. 矿井电法勘探研究现状与发展趋势[J]. 煤田地质与勘探,2023,51(1):259−276. doi: 10.12363/issn.1001-1986.23.01.0031
YUE Jianhua,YANG Haiyan,RAN Huageng. Research status and development trend of mine electrical prospecting[J]. Coal Geology & Exploration,2023,51(1):259−276. doi: 10.12363/issn.1001-1986.23.01.0031
Citation: YUE Jianhua,YANG Haiyan,RAN Huageng. Research status and development trend of mine electrical prospecting[J]. Coal Geology & Exploration,2023,51(1):259−276. doi: 10.12363/issn.1001-1986.23.01.0031

矿井电法勘探研究现状与发展趋势

doi: 10.12363/issn.1001-1986.23.01.0031
基金项目: 国家自然科学基金项目(42230811,41974086)
详细信息
    第一作者:

    岳建华,1964年生,男,山东济宁人,俄罗斯工程院外籍院士,从事矿井电法勘探工作. E-mail:yuejh@cumt.edu.cn

    通信作者:

    杨海燕,1980年生,男,安徽阜阳人,博士,教授,从事电磁法勘探理论与应用研究. E-mail:yhycumt@cumt.edu.cn

  • 中图分类号: P631;TD75

Research status and development trend of mine electrical prospecting

  • 摘要: 隐蔽地质因素透明化是煤炭智能精准开采和煤矿重大事故防治的关键。煤岩体结构和流体赋存等因素变化均可引起显著的电性变化,奠定了矿井电法勘探的物性基础。30多年来矿井电法勘探在我国煤矿防治水中发挥了关键作用,经过采煤工作面顶底板探测、掘进工作面超前探测、采煤工作面内小构造探测以及矿井电法动态监测几个阶段的发展,产生了一大批标志性的理论、技术与应用成果,并在超前探测理论、方法、技术研究方面均居于国际领先水平。在归纳1980年初以来我国煤炭生产面临的主要水文地质问题的基础上,系统总结了在煤矿生产安全突出问题所处的不同阶段矿井电法勘探技术的发展历程和国内相关单位所做出的重要贡献,聚焦矿井电法勘探研究与应用现状,着重从多源信息融合、工作面透明化与矿井智慧化角度出发分析了矿井电法勘探的发展趋势。认为在实现煤炭智能化精准开采、深地探测以及地下空间开发利用过程中,矿井电法动态监测将成为电法勘探的未来发展方向,矿井电法勘探的应用领域将得到大幅度延伸,其发展前景也会更为广阔。

     

  • 图  某工作面2105巷道综合电磁法探测视电阻率拟断面

    Fig. 1  Apparent resistivity pseudosection of comprehensive electromagnetic method measured at 2105 roadway of a working face

    图  某工作面音频电透视电导率剖面

    Fig. 2  Conductivity section of audio-frequency electrical penetration for a mine working face

    图  某工作面5105巷道顶底板瞬变电磁视电阻率拟断面

    Fig. 3  Apparent resistivity pseudosection of transient electromagnetic method measured at 5105 roadway roof and floor of a working face

    图  晚期视电阻率拟断面[78]

    Fig. 4  Section of apparent resistivity in later stage[78]

    图  基于随机模型的全波形反演

    Fig. 5  Full waveform inversion based on Stochastic Model

    图  工作面动态监测系统框架

    Fig. 6  Framework of dynamic monitoring system for a working face

    图  地电先兆特征在线辨识与智能提取

    Fig. 7  On-line identification and intelligent extraction of geoelectrical premonitory characters

  • [1] 袁亮. 煤炭精准开采科学构想[J]. 煤炭学报,2017,42(1):1−7.

    YUAN Liang. Scientific conception of precision coal mining[J]. Journal of China Coal Society,2017,42(1):1−7.
    [2] 袁亮. 我国煤炭工业高质量发展面临的挑战与对策[J]. 中国煤炭,2020,46(1):6−12.

    YUAN Liang. Challenges and countermeasures for high quality development of China’ s coal industry[J]. China Coal,2020,46(1):6−12.
    [3] 王国法,庞义辉,任怀伟. 煤矿智能化开采模式与技术路径[J]. 采矿与岩层控制工程学报,2020,2(1):013501.

    WANG Guofa,PANG Yihui,REN Huaiwei. Intelligent coal mining pattern and technological path[J]. Journal of Mining and Strata Control Engineering,2020,2(1):013501.
    [4] 王双明. 对我国煤炭主体能源地位与绿色开采的思考[J]. 中国煤炭,2020,46(2):11−16.

    WANG Shuangming. Thoughts about the main energy status of coal and green mining in China[J]. China Coal,2020,46(2):11−16.
    [5] YUE Jianhua,ZHANG Herui,YANG Haiyan,et al. Electrical prospecting methods for advance detection:Progress,problems,and prospects in Chinese coal mines[J]. IEEE Geoscience and Remote Sensing Magazine,2019,7(3):94−106.. doi: 10.1109/MGRS.2018.2890677
    [6] 鲁晶津,王冰纯,颜羽. 矿井电法在煤层采动破坏和水害监测中的应用进展[J]. 煤炭科学技术,2019,47(3):18−26.

    LU Jingjin,WANG Bingchun,YAN Yu. Advances of mine electrical resistivity method applied in coal seam mining destruction and water inrush monitoring[J]. Coal Science and Technology,2019,47(3):18−26.
    [7] 刘志新, 刘树才. 矿井地球物理勘探[M]. 徐州: 中国矿业大学出版社, 2016.
    [8] 曾方禄,王永胜,张小鹤,等. 矿井音频电透视及其应用[J]. 煤田地质与勘探,1997,25(6):54−58.

    ZENG Fanglu,WANG Yongsheng,ZHANG Xiaohe,et al. Mine voice frequency electric perspective technique and its application[J]. Coal Geology & Exploration,1997,25(6):54−58.
    [9] 岳建华. 煤矿井下直流电法勘探方法与技术[D]. 徐州: 中国矿业大学, 1991.

    YUE Jianhua. DC electrical prospecting method and technology in coal mine[D]. Xuzhou: China University of Mining and Technology, 1991.
    [10] 岳建华,李志聃. 巷道空间对矿井电测曲线影响的模型实验研究[J]. 煤田地质与勘探,1993,21(2):56−59.

    YUE Jianhua,LI Zhidan. Study and model experiments of tunnel influence on electric curves in coal mines[J]. Coal Geology & Exploration,1993,21(2):56−59.
    [11] 岳建华,刘树才,李志聃. 巷道顶、底板电测深曲线的自动反演解释[J]. 中国矿业大学学报,1995,24(3):62−67.

    YUE Jianhua,LIU Shucai,LI Zhidan. Automatic iterative inverse method of drift roof & floor sounding curves[J]. Journal of China University of Mining & Technology,1995,24(3):62−67.
    [12] 岳建华,李志聃,刘世蕾. 巷道层测深理论曲线数值模拟及资料解释方法[J]. 煤田地质与勘探,1997,25(1):52−56.

    YUE Jianhua,LI Zhidan,LIU Shilei. Numerical simulation and data interpretation method of theoretical curves in coal seam sounding[J]. Coal Geology & Exploration,1997,25(1):52−56.
    [13] 岳建华. 矿井直流电法理论问题研究[D]. 徐州: 中国矿业大学, 1997.

    YUE Jianhua. Study on the theoretical problems of mine direct current method[D]. Xuzhou: China University of Mining and Technology, 1997.
    [14] 岳建华,李志聃,刘世蕾. 层状介质中巷道底板电测深边界元法正演[J]. 煤炭学报,1998,23(4):347−351.

    YUE Jianhua,LI Zhidan,LIU Shilei. Modeling of floor sounding in roadway in a layered medium by boundary element method[J]. Journal of China Coal Society,1998,23(4):347−351.
    [15] 岳建华. 巷道层状围岩介质中稳恒电流场的边界积分解[J]. 中国矿业大学学报,1998,27(2):128−131.

    YUE Jianhua. Boundary integral solution of DC electric field in layered surrounding rocks of roadway[J]. Journal of China University of Mining & Technology,1998,27(2):128−131.
    [16] 岳建华,李志聃. 矿井直流电法勘探中的巷道影响[J]. 煤炭学报,1999,24(1):7−10.. doi: 10.3321/j.issn:0253-9993.1999.01.002

    YUE Jianhua,LI Zhidan. Roadway influence on electrical prospecting in underground mine[J]. Journal of China Coal Society,1999,24(1):7−10.. doi: 10.3321/j.issn:0253-9993.1999.01.002
    [17] 岳建华, 刘树才. 矿井直流电法勘探[M]. 徐州: 中国矿业大学出版社, 2000.
    [18] 刘树才,刘志新,姜志海,等. 矿井直流电法三维正演计算的若干问题[J]. 物探与化探,2004,28(2):170−172.

    LIU Shucai,LIU Zhixin,JIANG Zhihai,et al. Some problems in 3D forward simulation of mine direct current method[J]. Geophysical and Geochemical Exploration,2004,28(2):170−172.
    [19] 韩德品,张天敏,石亚丁,等. 井下单极–偶极直流电透视原理及解释方法[J]. 煤田地质与勘探,1997,25(5):32−35.

    HAN Depin,ZHANG Tianmin,SHI Yading,et al. The principle and interpretation method of the monopolar–dipole DC penetration at working face[J]. Coal Geology & Exploration,1997,25(5):32−35.
    [20] 黄俊革,鲍光淑,阮百尧. 坑道直流电阻率测深异常研究[J]. 地球物理学报,2005,48(1):222−228.. doi: 10.1002/cjg2.643

    HUANG Junge,BAO Guangshu,RUAN Baiyao. A study on anomalous bodies of DC resistivity sounding in tunnel[J]. Chinese Journal of Geophysics,2005,48(1):222−228.. doi: 10.1002/cjg2.643
    [21] 黄俊革,王家林,阮百尧. 坑道直流电阻率法超前探测研究[J]. 地球物理学报,2006,49(5):1529−1538.

    HUANG Junge,WANG Jialin,RUAN Baiyao. A study on advanced detection using DC resistivity method in tunnel[J]. Chinese Journal of Geophysics,2006,49(5):1529−1538.
    [22] 黄俊革,阮百尧,王家林. 坑道直流电阻率法超前探测的快速反演[J]. 地球物理学报,2007,50(2):619−624.

    HUANG Junge,RUAN Baiyao,WANG Jialin. The fast inversion for advanced detection using DC resistivity in tunnel[J]. Chinese Journal of Geophysics,2007,50(2):619−624.
    [23] 黄俊革,王家林,阮百尧. 坑道大极距偶极电阻率测深异常特征[J]. 地球物理学进展,2007,22(6):1935−1941.

    HUANG Junge,WANG Jialin,RUAN Baiyao. Anomalous of large polar distance dipole−dipole resistivity sounding in tunnel[J]. Progress in Geophysics,2007,22(6):1935−1941.
    [24] 胡运兵. 矿井高密度电阻率法的观测参数研究[D]. 北京: 煤炭科学研究总院, 2006.

    HU Yunbing. Study on observation parameters of high density resistivity method in mine[D]. Beijing: China Coal Research Institute, 2006.
    [25] 刘盛东, 吴荣新, 胡水根, 等. 网络分布式并行电法勘探系统[C]//中国地球物理学会第22届年会论文集. 成都, 2006.
    [26] 刘盛东,刘士刚,吴荣新,等. 网络并行电法仪与稳态电法勘探方向[J]. 中国科技成果,2007(24):31−33.

    LIU Shengdong,LIU Shigang,WU Rongxin,et al. Network parallel electrical instrument and steady–state electrical exploration direction[J]. China Science and Technology Achievements,2007(24):31−33.
    [27] 刘盛东,吴荣新,张平松,等. 三维并行电法勘探技术与矿井水害探查[J]. 煤炭学报,2009,34(7):927−932.

    LIU Shengdong,WU Rongxin,ZHANG Pingsong,et al. Three–dimensional parallel electric surveying and its applications in water disaster exploration in coal mines[J]. Journal of China Coal Society,2009,34(7):927−932.
    [28] GYULAI Á. Interpretation of in–mine geoelectric soundings by means of Kernel Functions[J]. Eö tvö s Lorand Geophysical Institute of Hungary Geophysical Transactions,1982,28(2):47−56.
    [29] CSOKÁS J,DOBROKA M,GYULAI Á. Geoelectric determination of quality changes and tectonic disturbances in coal deposits[J]. Geophysical Prospecting,1986,34(7):1067−1081.. doi: 10.1111/j.1365-2478.1986.tb00513.x
    [30] 于景邨. 矿井瞬变电磁法理论与应用技术研究[D]. 徐州: 中国矿业大学, 2001.

    YU Jingcun. Study on theory and application technology of transient electromagnetic method in mine[D]. Xuzhou: China University of Mining and Technology, 2001.
    [31] 陈金方,于景邨,李全,等. 矿井TEM探测导水陷落柱及检测注浆效果[J]. 江苏煤炭,2002(4):7−8.

    CHEN Jinfang,YU Jingcun,LI Quan,et al. Detection of water conducting collapse column and grouting effect by TEM in mine[J]. Jiangsu Coal,2002(4):7−8.
    [32] 白登海,MEJU M A,卢健,等. 时间域瞬变电磁法中心方式全程视电阻率的数值计算[J]. 地球物理学报,2003,46(5):697−704.. doi: 10.3321/j.issn:0001-5733.2003.05.018

    BAI Denghai,MEJU M A,LU Jian,et al. Numerical calculation of all–time apparent resistivity for the central loop transient electromagnetic method[J]. Chinese Journal of Geophysics,2003,46(5):697−704.. doi: 10.3321/j.issn:0001-5733.2003.05.018
    [33] 段中稳,李全,童宏树. 瞬变电磁法在预测任楼矿导水陷落柱中的作用[J]. 江苏煤炭,2004(2):13−14.

    DUAN Zhongwen,LI Quan,TONG Hongshu. The role of transient electromagnetic method in predicting the water–conducting collapse column in Renlou Mine[J]. Jiangsu Coal,2004(2):13−14.
    [34] 刘志新. 矿井瞬变电磁场分布规律与应用研究[D]. 徐州: 中国矿业大学, 2007.

    LIU Zhixin. Study on the distribution and application of mine transient electromagnetic field[D]. Xuzhou: China University of Mining and Technology, 2007.
    [35] 姜志海. 巷道掘进工作面瞬变电磁超前探测机理与技术研究[D]. 徐州: 中国矿业大学, 2008.

    JIANG Zhihai. Study on the mechanism and technology of advanced detection with transient electromagnetic method for roadway driving face[D]. Xuzhou: China University of Mining and Technology, 2008.
    [36] 杨海燕. 矿用多匝小回线源瞬变电磁场数值模拟与分布规律研究[D]. 徐州: 中国矿业大学, 2009.

    YANG Haiyan. Study on numerical simulation and distribution regularity of transient electromagnetic field with mine−used multi small loop[D]. Xuzhou: China University of Mining and Technology, 2009.
    [37] 胡博. 矿井瞬变电磁场数值模拟的边界元法[D]. 徐州: 中国矿业大学, 2010.

    HU Bo. Numerical simulation of mine transient electromagnetic field by boundary element method[D]. Xuzhou: China University of Mining and Technology, 2010.
    [38] 杨海燕, 岳建华. 矿井瞬变电磁法理论与技术研究[M]. 北京: 科学出版社, 2015.
    [39] KRIVOCHIEVA S,CHOUTEAU M. Whole−space modeling of a layered earth in time−domain electromagnetic measurements[J]. Journal of Applied Geophysics,2002,50(4):375−391.. doi: 10.1016/S0926-9851(02)00164-7
    [40] 刘树才, 姜志海, 赵云. 地面–坑道瞬变电磁灾害水源精细探查技术研究[C]//第十届中国国际地球电磁学术讨论会. 南昌: 中国地球物理学会地球电磁专业委员会, 2011: 117–119.
    [41] 苗彬,姜志海,刘树才. 矿井地面–巷道瞬变电磁探测系统设计及应用[J]. 煤炭科学技术,2016,44(12):148−153.

    MIAO Bin,JIANG Zhihai,LIU Shucai. Design and application of transient electromagnetic detection system on mine surface ground and in underground mine roadway[J]. Coal Science and Technology,2016,44(12):148−153.
    [42] 刘瑞军. 多层采空区地面–巷道瞬变电磁探测响应特征研究[D]. 徐州: 中国矿业大学, 2016.

    LIU Ruijun. Research on response characteristic of ground–tunnel transient electromagnetic method used in detecting multilayer goaf[D]. Xuzhou: China University of Mining and Technology, 2016.
    [43] 李术才,李凯,翟明华,等. 矿井地面–井下电性源瞬变电磁探测响应规律分析[J]. 煤炭学报,2016,41(8):2024−2032.

    LI Shucai,LI Kai,ZHAI Minghua,et al. Analysis of grounded transient electromagnetic with surface–tunnel configuration in mining[J]. Journal of China Coal Society,2016,41(8):2024−2032.
    [44] JIANG Zhihai,LIU Lian,LIU Shucai,et al. Response characteristics of water–bearing goaves for surface–to–underground transient electromagnetic method[J]. Journal of Environmental and Engineering Geophysics,2019,24(4):557−567.. doi: 10.2113/JEEG24.4.557
    [45] 于景邨,苏本玉,薛国强,等. 煤层顶板致灾水体井上下双磁源瞬变电磁响应及应用[J]. 煤炭学报,2019,44(8):2356−2360.

    YU Jingcun,SU Benyu,XUE Guoqiang,et al. Transient electromagnetic response of double magnetic source in coal seam roof disaster caused by water and its application[J]. Journal of China Coal Society,2019,44(8):2356−2360.
    [46] 李学军. 煤矿井下定点源梯度法超前探测试验研究[J]. 煤田地质与勘探,1992,20(4):59−63.

    LI Xuejun. Study and experiment on heading detecting by fixed electric Source gradient method in underground[J]. Coal Geology and Exploration,1992,20(4):59−63.
    [47] 程久龙,王玉和,于师建,等. 巷道掘进中电阻率法超前探测原理与应用[J]. 煤田地质与勘探,2000,28(4):60−62.

    CHENG Jiulong,WANG Yuhe,YU Shijian,et al. The principle and application of advance surveying in roadway excavation by resistivity method[J]. Coal Geology & Exploration,2000,28(4):60−62.
    [48] 刘青雯. 井下电法超前探测方法及其应用[J]. 煤田地质与勘探,2001,29(5):60−62.. doi: 10.3969/j.issn.1001-1986.2001.05.021

    LIU Qingwen. Underground electrical lead survey method and its application[J]. Coal Geology & Exploration,2001,29(5):60−62.. doi: 10.3969/j.issn.1001-1986.2001.05.021
    [49] 韩德品,李丹,程久龙,等. 超前探测灾害性含导水地质构造的直流电法[J]. 煤炭学报,2010,35(4):635−639.

    HAN Depin,LI Dan,CHENG Jiulong,et al. DC method of advanced detecting disastrous water–conducting or water–bearing geological structures along same layer[J]. Journal of China Coal Society,2010,35(4):635−639.
    [50] 韩德品, 吴正飞, 石显新, 等. 矿井直流超前探测法及灾害性含导水构造异常特征研究[C]//中国地球物理学会. 中国地球科学联合学术年会. 2014: 1377–1380.
    [51] 阮百尧,邓小康,刘海飞,等. 坑道直流电阻率超前聚焦探测新方法研究[J]. 地球物理学报,2009,52(1):289−296.

    RUAN Baiyao,DENG Xiaokang,LIU Haifei,et al. Research on a new method of advanced focus detection with DC resistivity in tunnel[J]. Chinese Journal of Geophysics,2009,52(1):289−296.
    [52] 阮百尧,邓小康,刘海飞,等. 坑道直流电阻率超前聚焦探测的影响因素及最佳观测方式[J]. 地球物理学进展,2010,25(4):1380−1386.

    RUAN Baiyao,DENG Xiaokang,LIU Haifei,et al. Influential factors and optimum survey method of advanced focus detection with DC resistivity in tunnels[J]. Progress in Geophysics,2010,25(4):1380−1386.
    [53] 张力,阮百尧,吕玉增,等. 坑道全空间直流聚焦超前探测模拟研究[J]. 地球物理学报,2011,54(4):1130−1139.

    ZHANG Li,RUAN Baiyao,LYU Yuzeng,et al. Study of full–space numerical modeling of advanced exploration in tunnel with DC focus resistivity method[J]. Chinese Journal of Geophysics,2011,54(4):1130−1139.
    [54] 强建科,阮百尧,周俊杰,等. 煤矿巷道直流三极法超前探测的可行性[J]. 地球物理学进展,2011,26(1):320−326.

    QIANG Jianke,RUAN Baiyao,ZHOU Junjie,et al. The feasibility of advanced detection using DC three−electrode method in coal−mine tunnel[J]. Progress in Geophysics,2011,26(1):320−326.
    [55] 马炳镇. 矿井中三维稳定电流场分布特征分析与超前探测研究[D]. 西安: 长安大学, 2011.

    MA Bingzhen. 3–D stable current field distribution analysis and advanced prediction research in mine[D]. Xi’an: Chang’an University, 2011.
    [56] 柳建新,邓小康,郭荣文,等. 坑道直流聚焦超前探测电阻率法有限元数值模拟[J]. 中国有色金属学报,2012,22(3):970−975.

    LIU Jianxin,DENG Xiaokang,GUO Rongwen,et al. Numerical simulation of advanced detection with DC focus resistivity in tunnel by finite element method[J]. The Chinese Journal of Nonferrous Metals,2012,22(3):970−975.
    [57] 邓小康. 隧道直流电阻率法超前聚焦探测研究[D]. 长沙: 中南大学, 2013.

    DENG Xiaokang. Research of DC focusing resistivity advanced detection in tunnel[D]. Changsha: Central South University, 2013.
    [58] 李术才,聂利超,刘斌,等. 多同性源阵列电阻率法隧道超前探测方法与物理模拟试验研究[J]. 地球物理学报,2015,58(4):1434−1446.. doi: 10.6038/cjg20150429

    LI Shucai,NIE Lichao,LIU Bin,et al. Advanced detection and physical model test based on multi−electrode sources array resistivity method in tunnel[J]. Chinese Journal of Geophysics,2015,58(4):1434−1446.. doi: 10.6038/cjg20150429
    [59] 李术才. 隧道突水突泥灾害源超前地质预报理论与方法[M]. 北京: 科学出版社, 2015.
    [60] 刘斌,李术才,李树忱,等. 隧道含水构造直流电阻率法超前探测研究[J]. 岩土力学,2009,30(10):3093−3101.. doi: 10.3969/j.issn.1000-7598.2009.10.035

    LIU Bin,LI Shucai,LI Shuchen,et al. Study of advanced detection of water−bearing geological structures with DC resistivity method[J]. Rock and Soil Mechanics,2009,30(10):3093−3101.. doi: 10.3969/j.issn.1000-7598.2009.10.035
    [61] 刘斌. 基于电阻率法与激电法的隧道含水地质构造超前探测与突水灾害实时监测研究[D]. 济南: 山东大学, 2010.

    LIU Bin. Study on the water−bearing structure advanced detection and water inrush hazards real−time monitoring in tunnel based on the electrical resistivity method and induced polarization method[D]. Jinan: Shandong University, 2010.
    [62] 刘斌,李术才,李树忱,等. 隧道含水构造电阻率法超前探测正演模拟与应用[J]. 吉林大学学报(地球科学版),2012,42(1):246−253.

    LIU Bin,LI Shucai,LI Shuchen,et al. Forward modeling and application of electrical resistivity method for detecting water−bearing structure in tunnel[J]. Journal of Jilin University (Earth Science Edition),2012,42(1):246−253.
    [63] 马炳镇,李貅. 矿井直流电法超前探中巷道影响的数值模拟[J]. 煤田地质与勘探,2013,41(1):78−81.

    MA Bingzhen,LI Xiu. Roadway influences on advanced DC detection in underground mine[J]. Coal Geology & Exploration,2013,41(1):78−81.
    [64] 鲁晶津,吴小平. 巷道直流电阻率法超前探测三维数值模拟[J]. 煤田地质与勘探,2013,41(6):83−86.

    LU Jingjin,WU Xiaoping. 3D numerical modeling of tunnel DC resistivity for in−advance detection[J]. Coal Geology & Exploration,2013,41(6):83−86.
    [65] 程建远,金丹,覃思. 煤矿地质保障中地球物理探测技术面临的挑战[J]. 煤炭科学技术,2013,41(9):112−116.. doi: 10.13199/j.cnki.cst.2013.09.002

    CHENG Jianyuan,JIN Dan,QIN Si. Challenges faced by geophysical detection technology in mine geological guarantee system[J]. Coal Science and Technology,2013,41(9):112−116.. doi: 10.13199/j.cnki.cst.2013.09.002
    [66] 李貅,武军杰,曹大明,等. 一种隧道水体不良地质体超前地质预报方法:瞬变电磁法[J]. 工程勘察,2006(3):70−75.

    LI Xiu,WU Junjie,CAO Daming,et al. A method of advanced geological prediction of unfavorable geological bodies in tunnel water body:Transient electromagnetic method[J]. Journal of Geotechnical Investigation & Surveying,2006(3):70−75.
    [67] 郭纯,刘白宙,白登海. 地下全空间瞬变电磁技术在煤矿巷道掘进头的连续跟踪超前探测[J]. 地震地质,2006,28(3):456−462.. doi: 10.3969/j.issn.0253-4967.2006.03.014

    GUO Chun,LIU Baizhou,BAI Denghai. Prediction of water disasters ahead of tunneling in coal mine using continuous detection by UW TEM[J]. Seismology and Geology,2006,28(3):456−462.. doi: 10.3969/j.issn.0253-4967.2006.03.014
    [68] YUE Jianhua, JIANG Zhihai, LIU Zhixin. Mine transient electromagnetic method and its application in China[C]//International Conference“Waste Management, Environmental Geotechnology and Global Sustainable Development”. Ljubljana, SLOVENIA, 2007.
    [69] 刘志新,岳建华,刘仰光. 扇形探测技术在超前探测中的应用研究[J]. 中国矿业大学学报,2007,36(6):822−825.

    LIU Zhixin,YUE Jianhua,LIU Yangguang. Application of sector detection technology in advanced detection[J]. Journal of China University of Mining & Technology,2007,36(6):822−825.
    [70] 范涛. 基于钻孔瞬变电磁的煤层气压裂效果检测方法[J]. 煤炭学报,2020,45(9):3195−3207.

    FAN Tao. Coalbed methane fracturing effectiveness test using bore–hole transient electromagnetic method[J]. Journal of China Coal Society,2020,45(9):3195−3207.
    [71] 范涛,张幼振,赵睿,等. 基于钻孔TEM智能立体成像的快速掘进超前探测方法[J]. 煤炭学报,2021,46(2):578−590.. doi: 10.13225/j.cnki.jccs.XR20.1676

    FAN Tao,ZHANG Youzhen,ZHAO Rui,et al. Advance detection method of rapid excavation based on borehole TEM intelligent stereo imaging[J]. Journal of China Coal Society,2021,46(2):578−590.. doi: 10.13225/j.cnki.jccs.XR20.1676
    [72] 张平松,李圣林,邱实,等. 巷道快速智能掘进超前探测技术与发展[J]. 煤炭学报,2021,46(7):2158−2173.. doi: 10.13225/j.cnki.jccs.jj21.0562

    ZHANG Pingsong,LI Shenglin,QIU Shi,et al. Advance detection technology and development of fast intelligent roadway drivage[J]. Journal of China Coal Society,2021,46(7):2158−2173.. doi: 10.13225/j.cnki.jccs.jj21.0562
    [73] 李术才,孙怀凤,李貅,等. 隧道瞬变电磁超前预报平行磁场响应探测方法[J]. 岩石力学与工程学报,2014,33(7):1309−1318.. doi: 10.13722/j.cnki.jrme.2014.07.002

    LI Shucai,SUN Huaifeng,LI Xiu,et al. Advanced geology prediction with parallel transient electromagnetic detection in tunnelling[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(7):1309−1318.. doi: 10.13722/j.cnki.jrme.2014.07.002
    [74] 孙怀凤,程铭,宿传玺,等. 隧(巷)道掘进工作面–钻孔瞬变电磁超前探测方法物理模拟试验研究[J]. 煤炭学报,2017,42(8):2110−2115.

    SUN Huaifeng,CHENG Ming,SU Chuanxi,et al. Tunnel face–borehole transient electromagnetic method and its physical experimental studies[J]. Journal of China Coal Society,2017,42(8):2110−2115.
    [75] 程久龙,邱浩,叶云涛,等. 矿井瞬变电磁法波场变换与数据处理方法研究[J]. 煤炭学报,2013,38(9):1646−1650.. doi: 10.13225/j.cnki.jccs.2013.09.002

    CHENG Jiulong,QIU Hao,YE Yuntao,et al. Research on wave–field transformation and data processing of the mine transient electromagnetic method[J]. Journal of China Coal Society,2013,38(9):1646−1650.. doi: 10.13225/j.cnki.jccs.2013.09.002
    [76] 程久龙,陈丁,薛国强,等. 矿井瞬变电磁法超前探测合成孔径成像研究[J]. 地球物理学报,2016,59(2):731−738.. doi: 10.6038/cjg20160230

    CHENG Jiulong,CHEN Ding,XUE Guoqiang,et al. Synthetic aperture imaging in advanced detection of roadway using the mine transient electromagnetic method[J]. Chinese Journal of Geophysics,2016,59(2):731−738.. doi: 10.6038/cjg20160230
    [77] 张平松,胡雄武. 矿井巷道掘进电磁法超前探测技术研究现状[J]. 煤炭科学技术,2015,43(1):112−115.

    ZHANG Pingsong,HU Xiongwu. Research status on technology of advanced detection by electromagnetic methods in mine laneway[J]. Coal Science and Technology,2015,43(1):112−115.
    [78] 杨海燕,邓居智,张华,等. 矿井瞬变电磁法全空间视电阻率解释方法研究[J]. 地球物理学报,2010,53(3):651−656.

    YANG Haiyan,DENG Juzhi,ZHANG Hua,et al. Research on full–space apparent resistivity interpretation technique in mine transient electromagnetic method[J]. Chinese Journal of Geophysics,2010,53(3):651−656.
    [79] 杨海燕,岳建华. 地下瞬变电磁法全区视电阻率核函数算法[J]. 中国矿业大学学报,2013,42(1):83−87.

    YANG Haiyan,YUE Jianhua. Kernelfunction algorithm of all–time apparent resistivity used in underground transient electromagnetic method[J]. Journal of China University of Mining & Technology,2013,42(1):83−87.
    [80] 刘俊,杨海燕,林云. 地下瞬变电磁法全区视电阻率二分搜索算法[J]. 工程地球物理学报,2012,9(5):526−530.. doi: 10.3969/j.issn.1672-7940.2012.05.004

    LIU Jun,YANG Haiyan,LIN Yun. Binary search algorithm of all–time apparent resistivity in underground transient electromagnetic method[J]. Chinese Journal of Engineering Geophysics,2012,9(5):526−530.. doi: 10.3969/j.issn.1672-7940.2012.05.004
    [81] 杨海燕,邓居智,汤洪志,等. 全空间瞬变电磁法资料解释方法中的平移算法[J]. 吉林大学学报(地球科学版),2014,44(3):1012−1017.

    YANG Haiyan,DENG Juzhi,TANG Hongzhi,et al. Translation algorithm of data interpretation technique in full−space transient electromagnetic method[J]. Journal of Jilin University (Earth Science Edition),2014,44(3):1012−1017.
    [82] 姜国庆,程久龙,孙晓云,等. 全空间瞬变电磁全区视电阻率优化二分搜索算法[J]. 煤炭学报,2014,39(12):2482−2488.

    JIANG Guoqing,CHENG Jiulong,SUN Xiaoyun,et al. Optimized binary search algorithm of full space transient electromagnetic method all–time apparent resistivity[J]. Journal of China Coal Society,2014,39(12):2482−2488.
    [83] 戚志鹏,智庆全,李貅,等. 隧道瞬变电磁任意点垂直分量全域视电阻率解释方法[J]. 岩石力学与工程学报,2015,34(7):1426−1434.

    QI Zhipeng,ZHI Qingquan,LI Xiu,et al. Full–field apparent resistivity definition of underground transient electromagnetic data[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(7):1426−1434.
    [84] 武军杰,李貅,智庆全,等. 电性源地–井瞬变电磁全域视电阻率定义[J]. 地球物理学报,2017,60(4):1595−1605.. doi: 10.6038/cjg20170431

    WU Junjie,LI Xiu,ZHI Qingquan,et al. Full field apparent resistivity definition of borehole TEM with electric source[J]. Chinese Journal of Geophysics,2017,60(4):1595−1605.. doi: 10.6038/cjg20170431
    [85] 李飞,程久龙,温来福,等. 矿井瞬变电磁法电阻率偏低原因分析与校正方法[J]. 煤炭学报,2018,43(7):1959−1964.

    LI Fei,CHENG Jiulong,WEN Laifu,et al. Reason and correction of low resistivity problem in mine transient electromagnetic method[J]. Journal of China Coal Society,2018,43(7):1959−1964.
    [86] 孙怀凤,李貅,卢绪山,等. 隧道强干扰环境瞬变电磁响应规律与校正方法:以TBM为例[J]. 地球物理学报,2016,59(12):4720−4732.. doi: 10.6038/cjg20161231

    SUN Huaifeng,LI Xiu,LU Xushan,et al. Transient electromagnetic responses in tunnels with strong interferences and the correcting method:A TBM example[J]. Chinese Journal of Geophysics,2016,59(12):4720−4732.. doi: 10.6038/cjg20161231
    [87] 杨海燕,岳建华,李锋平. 斜阶跃电流激励下多匝小回线瞬变电磁场延时特征[J]. 地球物理学报,2019,62(9):3615−3628.. doi: 10.6038/cjg2019M0341

    YANG Haiyan,YUE Jianhua,LI Fengping. The decay characteristics of transient electromagnetic fields stimulated by ramp step current in multi–turn small coil[J]. Chinese Journal of Geophysics,2019,62(9):3615−3628.. doi: 10.6038/cjg2019M0341
    [88] 杨海燕,李锋平,岳建华,等. 基于“烟圈”理论的圆锥型场源瞬变电磁优化反演[J]. 中国矿业大学学报,2016,45(6):1230−1237.

    YANG Haiyan,LI Fengping,YUE Jianhua,et al. Optimal transient electromagnetic inversion of conical field source based on smoke ring theory[J]. Journal of China University of Mining & Technology,2016,45(6):1230−1237.
    [89] YANG Haiyan,LI Fengping,YUE Jianhua,et al. Cone–shaped source characteristics and inductance effect of transient electromagnetic method[J]. Applied Geophysics,2017,14(1):165−174.. doi: 10.1007/s11770-017-0604-2
    [90] YANG Haiyan, LI Fengping, CHEN Shen’en, et al. An inversion of transient electromagnetic data from a conical source[J]. Applied Geophysics, 2018, 15(3/4): 545–555.
    [91] YANG Haiyan,CHEN Shen’en,YUE Jianhua,et al. Transient electromagnetic response with a ramp current excitation using conical source[J]. IEEE Access,2019,7:63829−63836.. doi: 10.1109/ACCESS.2019.2914740
    [92] BARSUKOV P O,FAINBERG E B,KHABENSKY E O. Shallow investigations by TEM–fast technique:Methodology and examples[J]. Electromagnetic Sounding of the Earth’s Interior:Theory,Modelling,Practice,2015:47−78.
    [93] ASTEN M W, PRICE D G. Transient EM sounding by the in/out–loop method[J]. Exploration Geophysics, 1985, 16(2/3): 165–168.
    [94] 程惠红,孙长青,吴云龙,等. 2021年度地球物理学和空间物理学学科基金项目评审与资助成果分析[J]. 地球科学进展,2021,36(11):1172−1179.. doi: 10.11867/j.issn.1001-8166.2021.11.dqkxjz202111008

    CHENG Huihong,SUN Changqing,WU Yunlong,et al. Introduction on the judgement programs in 2021 and the achievement of funded programs in 2020 of the discipline of geophysics and space physics,department of earth sciences,national natural science foundation of China[J]. Advances in Earth Science,2021,36(11):1172−1179.. doi: 10.11867/j.issn.1001-8166.2021.11.dqkxjz202111008
    [95] Вними. методические укаэания по шахтной электрораэведке малоамплитудных нарушений угольных пластов[M]. ленинград, 1986.
    [96] DOBROKA M,GYULAI Á,ORMOS T,et al. Joint inversion of seismic and geoelectric data recorded in an underground coal mine[J]. Geophysical Prospecting,1991,39(5):643−665.. doi: 10.1111/j.1365-2478.1991.tb00334.x
    [97] ORMOS T, GYULAI Á, DOBROKA M. In–mine geoelectric methods for detection of tectonic disturbances of coal seams[C]//Near Surface 2008–14th EAGE European Meeting of Environmental and Engineering Geophysics. 2008.
    [98] GYULAI Á,DOBROKA M,ORMOS T,et al. In–mine geoelectric investigations for detecting tectonic disturbances in coal seam structures[J]. Acta Geophysica,2013,61(5):1184−1195.. doi: 10.2478/s11600-013-0112-6
    [99] GYULAI Á, ORMOS T, DOBROKA M, et al. Application of in–mine geoelectric methods for detecting tectonic disturbances of the coal seam structure[C]//78th EAGE Conference and Exhibition. Vienna, 2016.
    [100] 岳建华,李志聃. 煤矿井下直流层测深方法与原理[J]. 煤炭学报,1994,19(4):422−429.

    YUE Jianhua,LI Zhidan. DC layer sounding in coal seams[J]. Journal of China Coal Society,1994,19(4):422−429.
    [101] YUE Jianhua,LIU S C,LIU S L,et al. Modeling of coal seam sounding curves by BEM[J]. Boundary Element Technology XIV,2001,27:95−100.
    [102] 刘志新,许新刚,岳建华. 矿井电法三维有限元正演模拟:直流电透视方法技术研究[J]. 物探化探计算技术,2003,25(4):302−307.. doi: 10.3969/j.issn.1001-1749.2003.04.003

    LIU Zhixin,XU Xingang,YUE Jianhua. 3D finite element simulation for mine DC electrical method:Research of the DC penetration method[J]. Computing Techniques for Geophysical and Geochemical Exploration,2003,25(4):302−307.. doi: 10.3969/j.issn.1001-1749.2003.04.003
    [103] 吕绍林. 地球物理方法预测瓦斯突出研究综述[J]. 焦作工学院学报,1997,16(2):95−100.

    LYU Shaolin. The overview of researches on outburst prediction by geophysical methods[J]. Journal of Jiaozuo Institute of Technology,1997,16(2):95−100.
    [104] 石亚丁. 断层构造在层测深曲线上的响应特征[J]. 煤田地质与勘探,2010,38(5):55−57.

    SHI Yading. Response characteristics of fault in coal seam sounding curve[J]. Coal Geology & Exploration,2010,38(5):55−57.
    [105] SHI Yading. A data interpretation method of coal seam sounding and application effect[J]. Procedia Earth and Planetary Science,2011,3:311−317.. doi: 10.1016/j.proeps.2011.09.099
    [106] BIBBY H M. The apparent resistivity tensor[J]. Geophysics,2012,42(6):1258−1261.
    [107] DOICIN D. Quadripole–quadripole arrays for direct current resistivity measurements:Model studies[J]. Geophysics,1976,41(1):79−95.. doi: 10.1190/1.1440609
    [108] BIBBY H M. Analysis of multiple–source bipole–quadripole resistivity surveys using the apparent resistivity tensor[J]. Geophysics,1986,51(4):972−983.. doi: 10.1190/1.1442155
    [109] BIBBY H M,HOHMANN G W. Three–dimensional interpretation of multiple–source bipole–dipole resistivity data using the apparent resistivity tensor[J]. Geophysical Prospecting,1993,41(6):697−723.. doi: 10.1111/j.1365-2478.1993.tb00879.x
    [110] Акуленко С А, Березина С А, и др. Электроразведка методом сопротивлений[M]. мгу, 1994.
    [111] MODIN I, PERVAGO E, SHEVNIN V A, et al. Vector measurements in resistivity prospecting[C]//56th EAEG Meeting. Vienna, 1994.
    [112] BOBACHEV A, BOLSHAKOV D K, MODIN I, et al. The study of the anisotropy in the resistivity method[M]. Moscow State University, 2012.
    [113] FIORE B D,MAURIELLO P,MONNA D,et al. Examples of application of tensorial resistivity probability tomography to architectonic and archaeological targets[J]. Annals of Geophysics,2002,45(2):417−430.
    [114] MAURIELLO P,PATELLA D. Resistivity tensor probability tomography[J]. Progress in Electromagnetics Research B,2008,8:129−146.. doi: 10.2528/PIERB08051604
    [115] NORTH L,BEST A I,SOTHCOTT J,et al. Laboratory determination of the full electrical resistivity tensor of heterogeneous carbonate rocks at elevated pressures[J]. Geophysical Prospecting,2013,61(2):458−470.. doi: 10.1111/j.1365-2478.2012.01113.x
    [116] VARGA M, NOVÁK A, SZALAI S, et al. Application of tensorial electrical resistivity mapping to archaeological prospection[M]. Archaeogeophysics, 2019.
    [117] LI Yuguo, SPITZER K. Finite element resistivity modelling for three–dimensional structures with arbitrary anisotropy[J]. Physics of the Earth & Planetary Interiors, 2005, 150(1/2/3): 15–27.
    [118] MICHAEL S Z. Foundations of geophysical electromagnetic theory and methods[M]. Elsevier B V, 2018.
    [119] BISWAS A, SHARMA S. Advances in modeling and interpretation in near surface geophysics[M]. Springer International Publishing, 2020.
    [120] DINES K A,LYTLE R J. Computerized geophysical tomography[J]. Proceedings of the IEEE,1979,67(7):1065−1073.. doi: 10.1109/PROC.1979.11390
    [121] HILL D A. Radio propagation in a coal seam and the inverse problem[J]. Journal of Research of the National Bureau of Standards,1984,89(5):385−394.. doi: 10.6028/jres.089.022
    [122] STOLARCZYK L, ROGERS G, HATHERLY P. Comparison of radio imaging method (RIM) electromagnetic wave tomography with in–mine geological mapping in the Liddell, Bulli and Wongawilli coal seams[J]. Exploration Geophysics, 1988, 19(1/2): 169–170.
    [123] STOLARCZYK L,FRY R C. Radio imaging method (RIM) or diagnostic imaging of anomalous geologic structures in coal seam waveguides[J]. Transactions of Society for Mining,Metallurgy and Exploration,Inc.,1990(288):1806−1814.
    [124] GREENFIELD R J,WU S T. Electromagnetic wave propagation in disrupted coal seams[J]. Geophysics,1991,56(10):1522−1692.. doi: 10.1190/1.1442963
    [125] STOLARCZYK L G, STOLARCZYK G L. Electromagnetic seam wave mapping of roof rock conditions across a longwall panel[C]//In Proceedings of the 18th International Conference on Ground Control in Mining. 1999: 50–53.
    [126] STOLARCZYK L G, PENG S S, HOLLAND C T. Advanced electromagnetic wave technologies for the detection of abandoned mine entries and delineation of barrier pillars[R]. 2003.
    [127] STOLARCZYK L G. Application of radio geophysics for mining engineering[R]. 2011.
    [128] 刘四新,倪建福. 井间电磁法综述[J]. 地球物理学进展,2020,35(1):153−165.

    LIU Sixin,NI Jianfu. Review for cross−hole electromagnetic method[J]. Progress in Geophysics,2020,35(1):153−165.
    [129] 王琦,许孝庭,刘立振. 坑道无线电波透视层析成像中数字模型的设计与特征处理[J]. 物探化探计算技术,1998,20(2):156−160.

    WANG Qi,XU Xiaoting,LIU Lizhen. The digital model programming and particular algorithms for tomography of radio–wave tunnels penetration[J]. Computing Techniques for Geophysical and Geochemical Exploration,1998,20(2):156−160.
    [130] 程久龙,于师建,邱伟,等. 工作面电磁波高精度层析成像及其应用[J]. 煤田地质与勘探,1999,27(4):62−64.. doi: 10.3969/j.issn.1001-1986.1999.04.019

    CHENG Jiulong,YU Shijian,QIU Wei,et al. High accuracy computer tomography of electromagnetic wave on working faces and its application[J]. Coal Geology & Exploration,1999,27(4):62−64.. doi: 10.3969/j.issn.1001-1986.1999.04.019
    [131] 吴燕清. 地下电磁波探测及应用研究[D]. 长沙: 中南大学, 2002.

    WU Yanqing. Underground electromagnetic wave methods and applications[D]. Changsha: Central South University, 2002.
    [132] 董守华,王琦. 层析成像在巷道无线电波透视法中的应用[J]. 中国矿业大学学报,2003,32(5):579−582.. doi: 10.3321/j.issn:1000-1964.2003.05.025

    DONG Shouhua,WANG Qi. Application of tomography in radio wave tunnels perspective[J]. Journal of China University of Mining & Technology,2003,32(5):579−582.. doi: 10.3321/j.issn:1000-1964.2003.05.025
    [133] 刘鑫明,刘树才,姜志海,等. 基于改进振幅衰减常数的无线电波透视层析成像研究[J]. 地球物理学进展,2013,28(2):980−987.. doi: 10.6038/pg20130252

    LIU Xinming,LIU Shucai,JIANG Zhihai,et al. Study on the tomography of radio–wave penetration based on improved amplitude attenuation constant[J]. Progress in Geophysics,2013,28(2):980−987.. doi: 10.6038/pg20130252
    [134] 张辉,潘冬明,刘朋,等. 模拟分析初始场强对坑透反演结果的影响[J]. 地球物理学进展,2016,31(6):2788−2795.. doi: 10.6038/pg20160658

    ZHANG Hui,PAN Dongming,LIU Peng,et al. Simulation and analysis of the influence of initial field intensity on the inversion results[J]. Progress in Geophysics,2016,31(6):2788−2795.. doi: 10.6038/pg20160658
    [135] 肖玉林,吴荣新,严家平,等. 工作面坑透场强传播规律及有效透视宽度研究[J]. 煤炭学报,2017,42(3):712−718.

    XIAO Yulin,WU Rongxin,YAN Jiaping,et al. Field strength propagation law of radio wave penetration and effective perspective width for coal face[J]. Journal of China Coal Society,2017,42(3):712−718.
    [136] 肖玉林,吴荣新,严家平,等. 回采工作面多频率无线电波透视探测研究[J]. 煤田地质与勘探,2016,44(5):146−148.

    XIAO Yulin,WU Rongxin,YAN Jiaping,et al. Detection of multi–frequency radio wave penetration in stope face[J]. Coal Geology & Exploration,2016,44(5):146−148.
    [137] 岳蕾. 电磁波在煤层中的传播规律与全波形概率反演方法研究[D]. 徐州: 中国矿业大学, 2016.

    YUE Lei. Study on the propagation law of electromagnetic wave in coal seam and its full waveform probabilistic inversion method[D]. Xuzhou: China University of Mining and Technology, 2016.
    [138] 李德春,葛宝堂,忽杰武. 矿山灾害电阻率法预测机理及试验[J]. 煤田地质与勘探,1999,27(6):62−65.

    LI Dechun,GE Baotang,HU Jiewu. Mechanism and tests of mine disaster prediction by resistivity method[J]. Coal Geology & Exploration,1999,27(6):62−65.
    [139] 程久龙,于师建. 覆岩变形破坏电阻率响应特征的模拟实验研究[J]. 地球物理学报,2000,43(5):699−706.. doi: 10.3321/j.issn:0001-5733.2000.05.014

    CHENG Jiulong,YU Shijian. Simulation experiment on the response of resistivity to deformation and failure of overburden[J]. Chinese Journal of Geophysics,2000,43(5):699−706.. doi: 10.3321/j.issn:0001-5733.2000.05.014
    [140] 程久龙. 矿山采动裂隙岩体地球物理场特征研究及工程应用[J]. 中国矿业大学学报,2008,37(6):1−3.

    CHENG Jiulong. Study on geophysical field characteristics of mining−induced fracture rock mass in mine and its applications[J]. Journal of China University of Mining & Technology,2008,37(6):1−3.
    [141] 刘盛东,吴荣新,张平松,等. 高密度电阻率法观测煤层上覆岩层破坏[J]. 煤炭科学技术,2001,29(4):18−19.. doi: 10.3969/j.issn.0253-2336.2001.04.007

    LIU Shengdong,WU Rongxin,ZHANG Pingsong,et al. High density electric resistance method applied to monitor and measure overburden failure above seam[J]. Coal Science and Technology,2001,29(4):18−19.. doi: 10.3969/j.issn.0253-2336.2001.04.007
    [142] 翟培合. 采场底板破坏及底板水动态监测系统研究: 电阻率CT技术在煤矿中的开发应用[D]. 青岛: 山东科技大学, 2005.

    ZHAI Peihe. Study on the dynamic monitoring system of the destroy of the bed plate and the water of the bed plate[D]. Qingdao: Shandong University of Science and Technology, 2005.
    [143] 刘树才,刘鑫明,姜志海,等. 煤层底板导水裂隙演化规律的电法探测研究[J]. 岩石力学与工程学报,2009,28(2):348−356.

    LIU Shucai,LIU Xinming,JIANG Zhihai,et al. Research on electrical prediction for evaluating water conducting fracture zones in coal seam floor[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):348−356.
    [144] 李建楼,刘盛东,张平松,等. 并行网络电法在煤层覆岩破坏监测中的应用[J]. 煤田地质与勘探,2008,36(2):61−64.

    LI Jianlou,LIU Shengdong,ZHANG Pingsong,et al. Failure dynamic observation of upper covered stratum under mine using parallel network electricity method[J]. Coal Geology & Exploration,2008,36(2):61−64.
    [145] 吴荣新,张卫,张平松. 并行电法监测工作面“垮落带”岩层动态变化[J]. 煤炭学报,2012,37(4):571−577.

    WU Rongxin,ZHANG Wei,ZHANG Pingsong. Exploration of parallel electrical technology for the dynamic variation of caving zone strata in coal face[J]. Journal of China Coal Society,2012,37(4):571−577.
    [146] 刘志新,王明明. 环工作面电磁法底板突水监测技术[J]. 煤炭学报,2015,40(5):1117−1125.

    LIU Zhixin,WANG Mingming. Study on encircling face electromagnetic method for monitoring coal face floor inrush[J]. Journal of China Coal Society,2015,40(5):1117−1125.
    [147] 胡雄武,徐虎,彭苏萍,等. 煤层采动覆岩富水性变化规律瞬变电磁法动态监测[J]. 煤炭学报,2021,46(5):1576−1586.

    HU Xiongwu,XU Hu,PENG Suping,et al. Dynamic monitoring of water abundance of overlying strata in coal seam by transient electromagnetic method[J]. Journal of China Coal Society,2021,46(5):1576−1586.
    [148] 侯文光,程久龙,李达,等. 基于钻孔电阻率法动态监测的煤层覆岩瓦斯抽采层位确定:以李雅庄煤矿为例[J]. 科学技术与工程,2021,21(17):7046−7052.

    HOU Wenguang,CHENG Jiulong,LI Da,et al. Determination of gas drainage layer in overburden rock of coal seam based on dynamic monitoring by borehole resistivity method:A case study of Liyazhuang Coal Mine[J]. Science Technology and Engineering,2021,21(17):7046−7052.
    [149] 卢新明,阚淑婷. 煤矿动力灾害本源预警方法关键技术与展望[J]. 煤炭学报,2020,45(增刊1):128−139.

    LU Xinming,KAN Shuting. Key technology and prospect of the original source early warning method for coal mine dynamic disaster[J]. Journal of China Coal Society,2020,45(Sup.1):128−139.
    [150] 王国林. 煤矿底板突水动态监测时延电阻率成像技术研究[D]. 徐州: 中国矿业大学, 2018.

    WANG Guolin. Study on time–lapse electrical resistivity tomography technology for dynamic monitoring of floor water inundation in coal mine[D]. Xuzhou: China University of Mining and Technology, 2018.
    [151] 秦伟. 矿井在线式电法勘探仪的设计[J]. 现代电子技术,2015,38(14):109−112.. doi: 10.3969/j.issn.1004-373X.2015.14.031

    QIN Wei. Design of online resistivity method exploration instrument in mine[J]. Modern Electronics Technique,2015,38(14):109−112.. doi: 10.3969/j.issn.1004-373X.2015.14.031
    [152] 王冰纯,鲁晶津,房哲. 基于伪随机序列的矿井电法监测系统[J]. 煤矿安全,2018,49(12):118−121.

    WANG Bingchun,LU Jingjin,FANG Zhe. Research on mine electrical monitoring system based on pseudo−random sequence[J]. Safety in Coal Mines,2018,49(12):118−121.
    [153] BRACE W F,ORANGE A S. Electrical resistivity changes in saturated rocks during fracture and frictional sliding[J]. Journal of Geophysical Research,1968,73(4):1433−1445.. doi: 10.1029/JB073i004p01433
    [154] LABRECQUE D J,YANG Xianjin. Difference inversion of ERT data:A fast inversion method for 3D in situ monitoring[J]. Journal of Environmental and Engineering Geophysics,2001,6(2):83−89.. doi: 10.4133/JEEG6.2.83
    [155] RAMIREZ A L,NITAO J J,HANLEY W G,et al. Stochastic inversion of electrical resistivity changes using a Markov Chain Monte Carlo approach[J]. Journal of Geophysical Research,2005,110(B2):B02101.
    [156] OLDENBORGER G A,ROUTH P S,KNOLL M D. Model reliability for 3D electrical resistivity tomography:Application of the volume of investigation index to a time–lapse monitoring experiment[J]. Geophysics,2007,72(4):F167−F175.. doi: 10.1190/1.2732550
    [157] TSOURLOS P,OGILVY R,PAPAZACHOS C,et al. Measurement and inversion schemes for single borehole−to−surface electrical resistivity tomography surveys[J]. Journal of Geophysics and Engineering,2011,8(4):487−497.. doi: 10.1088/1742-2132/8/4/001
    [158] COSCIA I,LINDE N,GREENHALGH S,et al. A filtering method to correct time–lapse 3D ERT data and improve imaging of natural aquifer dynamics[J]. Journal of Applied Geophysics,2012,80:12−24.. doi: 10.1016/j.jappgeo.2011.12.015
    [159] LESPARRE N,NGUYEN F,KEMNA A,et al. A new approach for time−lapse data weighting in electrical resistivity tomography[J]. Geophysics,2017,82(6):E325−E333.. doi: 10.1190/geo2017-0024.1
    [160] LOKE M H,WILKINSON P B,CHAMBERS J E,et al. Rapid inversion of data from 2D resistivity surveys with electrode displacements[J]. Geophysical Prospecting,2018,66(3):579−594.. doi: 10.1111/1365-2478.12522
    [161] VANDERBORGHT J,KEMNA A,HARDELAUF H,et al. Potential of electrical resistivity tomography to infer aquifer transport characteristics from tracer studies:A synthetic case study[J]. Water Resources Research,2005,41(6):1−23.
    [162] MILLER C R,ROUTH P S,BROSTEN T R,et al. Application of time–lapse ERT imaging to watershed characterization[J]. Geophysics,2008,73(3):G7−G17.. doi: 10.1190/1.2907156
    [163] KIM J H,YI M J,PARK S G,et al. 4–D inversion of DC resistivity monitoring data acquired over a dynamically changing earth model[J]. Journal of Applied Geophysics,2009,68(4):522−532.. doi: 10.1016/j.jappgeo.2009.03.002
    [164] CLEMENT R,DESCLOITRES M,GUNTHER T,et al. Improvement of electrical resistivity tomography for leachate injection monitoring[J]. Waste Management,2010,30(3):452−464.. doi: 10.1016/j.wasman.2009.10.002
    [165] WILKINSON P B,CHAMBERS J E,MELDRUM P I,et al. Predicting the movements of permanently installed electrodes on an active landslide using time–lapse geoelectrical resistivity data only[J]. Geophysical Journal International,2010,183(2):543−556.. doi: 10.1111/j.1365-246X.2010.04760.x
    [166] HILBICH C,FUSS C,HAUCK C. Automated time–lapse ERT for improved process analysis and monitoring of frozen ground[J]. Permafrost and Periglacial Processes,2011,22(4):306−319.. doi: 10.1002/ppp.732
    [167] PERRI M T,CASSIANI G,GERVASIO I,et al. A saline tracer test monitored via both surface and cross−borehole electrical resistivity tomography:Comparison of time−lapse results[J]. Journal of Applied Geophysics,2012,79:6−16.. doi: 10.1016/j.jappgeo.2011.12.011
    [168] POWER C, GERHARD J, TSOURLOS P I, et al. Improved time–lapse ERT monitoring of dense non−aqueous phase liquids (DNPLs) with surface−to−horizontal borehole arrays[C]//Near Surface Geoscience 2014–20th European Meeting of Environmental and Engineering Geophysics. Athens, 2014.
    [169] RUCKER D. Investigating motion blur and temporal aliasing from time−lapse electrical resistivity[J]. Journal of Applied Geophysics,2014,111:1−13.. doi: 10.1016/j.jappgeo.2014.09.010
    [170] STRICKLAND C E,VERMEUL V R,BONNEVILLE A,et al. Geophysical monitoring methods evaluation for the FutureGen 2.0 project[J]. Energy Procedia,2014,63:4394−4403.. doi: 10.1016/j.egypro.2014.11.474
    [171] CHAMBERS J E,MELDRUM P I,WILKINSON P B,et al. Spatial monitoring of groundwater drawdown and rebound associated with quarry dewatering using automated time–lapse electrical resistivity tomography and distribution guided clustering[J]. Engineering Geology,2015,193:412−420.. doi: 10.1016/j.enggeo.2015.05.015
    [172] CAREY A M,PAIGE G B,CARR B J,et al. Forward modeling to investigate inversion artifacts resulting from time–lapse electrical resistivity tomography during rainfall simulations[J]. Journal of Applied Geophysics,2017,145:39−49.. doi: 10.1016/j.jappgeo.2017.08.002
    [173] GIORDANO N,ARATO A,COMINA C,et al. Time–lapse electrical resistivity imaging of the thermally affected zone of a borehole thermal energy storage system near Torino (Northern Italy)[J]. Journal of Applied Geophysics,2017,140:123−134.. doi: 10.1016/j.jappgeo.2017.03.015
    [174] LIU Bin,LIU Zhengyu,LI Shucai,et al. An improved time–lapse resistivity tomography to monitor and estimate the impact on the groundwater system induced by tunnel excavation[J]. Tunnelling & Underground Space Technology,2017,66:107−120.
    [175] POWER C, TSOURLOS P, GERHARD J, et al. Simulated time–lapse DC–IP monitoring of dense non–aqueous phase liquids (DNAPLs): An initial approach[C]//Near Surface Geoscience 2017–23rd European Meeting of Environmental & Engineering Geophysics. Malmo, 2017.
    [176] TIEDEMAN C R,BARRASH W. Hydraulic tomography:3D hydraulic conductivity,fracture network,and connectivity in mudstone[J]. Groundwater,2020,58(2):238−257.. doi: 10.1111/gwat.12915
    [177] AVERSANA P D. Integration of seismic,MT and gravity data in a thrust belt interpretation[J]. First Break,2001,19(6):335−341.. doi: 10.1046/j.1365-2397.2001.00158.x
    [178] ROY L,SEN M K,MCINTOSH K,et al. Joint inversion of first arrival seismic travel–time and gravity data[J]. Journal of Geophysics and Engineering,2005,2(3):277−289.. doi: 10.1088/1742-2132/2/3/011
    [179] LIU G F, MENG X H, GUO L H. The gravity and seismic sequential inversion and its GPU implementation[C]//International Workshop on Gravity, Electrical & Magnetic Methods and their Applications, Beijing, China, 2011: 1.
    [180] 陈晓,于鹏,张罗磊,等. 地震与大地电磁测深数据的自适应正则化同步联合反演[J]. 地球物理学报,2011,54(10):2673−2681.. doi: 10.3969/j.issn.0001-5733.2011.10.024

    CHEN Xiao,YU Peng,ZHANG Luolei,et al. Adaptive regularized synchronous joint inversion of MT and seismic data[J]. Chinese Journal of Geophysics,2011,54(10):2673−2681.. doi: 10.3969/j.issn.0001-5733.2011.10.024
    [181] 陈晓. 大地电磁与地震正则化联合反演研究[D]. 上海: 同济大学, 2013.

    CHEN Xiao. Joint inversion of magnetotelluric and seismic regularization[D]. Shanghai: Tongji University, 2013.
    [182] 陈晓,于鹏,邓居智,等. 基于宽范围岩石物性约束的大地电磁和地震联合反演[J]. 地球物理学报,2016,59(12):4690−4700.. doi: 10.6038/cjg20161228

    CHEN Xiao,YU Peng,DENG Juzhi,et al. Joint inversion of MT and seismic data based on wide–range petrophysical constraints[J]. Chinese Journal of Geophysics,2016,59(12):4690−4700.. doi: 10.6038/cjg20161228
    [183] ZHANG Lei, DENG Juzhi, CHEN Xiao. Joint inversion of magnetotelluric and gravity data based on petrophysical property[C]//The 12th China International Geo–electromagnetic Induction Workshop. Changsha, 2015: 183–186.
    [184] 张磊. 基于岩石物性约束的MT 与重力二维正则化联合反演[D]. 南昌: 东华理工大学, 2016.

    ZHANG Lei. Regularization joint inversion of two–dimensional magnetotelluric and gravity based on petrophysical constraints[D]. Nanchang: East China University of Technology, 2016.
    [185] COLOMBO D,STEFANO M D. Geophysical modeling via simultaneous joint inversion of seismic,gravity,and electromagnetic data:Application to prestack depth imaging[J]. The Leading Edge,2007,26(3):249−384.
    [186] HEINCKE B, JEGEN M, MOORKAMP M, et al. Joint–inversion of magnetotelluric, gravity and seismic data to image sub–basalt sediments offshore the Faroe–Islands[C]//the 2014 SEG Annual Meeting. Denver, 2014: 770–775.
    [187] SUN Jiajia, LI Yaoguo. Joint inversion of multiple geophysical data: A petrophysical approach using guided fuzzy c−means clustering[C]//SEG Technical Program Expanded Abstracts. 2012.
    [188] CARTER−MCAUSLAN A,LELIEVRE P G,FARQUHARSON C G. A study of fuzzy c–means coupling for joint inversion,using seismic tomography and gravity data test scenarios[J]. Geophysics,2015,80(1):W1−W15.
    [189] ZHDANOV M S,GRIBENKO A V,WILSON G A. Generalized joint inversion of multimodal geophysical data using Gramian constraints[J]. Geophysical Research Letters,2012,39(9):L09301.
    [190] ZHDANOV M S,GRIBENKO A V,WILSON G A,et al. 3D joint inversion of geophysical data with Gramian constraints:A case study from the Carrapateena IOCG deposit,South Australia[J]. The Leading Edge,2012,31(11):1382−1388.. doi: 10.1190/tle31111382.1
    [191] ZHDANOV M S,ZHU Yue,ENDO M,et al. Novel approach to joint 3D inversion of EM and potential field data using Gramian constraints[J]. First Break,2016,34(4):59−64.
    [192] ZHU Yue, ZHDANOV M S, CUMA M. Gramian constraints in the joint inversion of airborne gravity gradiometry and magnetic data[C]//SEG Technical Program Expanded Abstracts. 2013: 1166–1170.
    [193] ZHU Yue, CUMA M, ZHDANOV M S, et al. Joint inversion of airborne gravity gradiometry and magnetic data from the Lac de Gras region of the Northwest Territories of Canada[C]//SEG Technical Program Expanded Abstracts. 2014: 1709–1713.
    [194] ZHU Yue, ZHDANOV M S, CUMA M. Inversion of TMI data for the magnetization vector using Gramian constraints[C]//SEG Technical Program Expanded Abstracts. 2015: 1602–1606.
    [195] 孙振明,毛善君,祁和刚,等. 煤矿三维地质模型动态修正关键技术[J]. 煤炭学报,2014,39(5):918−924.

    SUN Zhenming,MAO Shanjun,QI Hegang,et al. Dynamic correction of coal mine three–dimensional geological model[J]. Journal of China Coal Society,2014,39(5):918−924.
    [196] KAUFMANN O,MARTIN T. 3D geological modelling from boreholes,cross–sections and geological maps,application over former natural gas storages in coal mines[J]. Computers and Geosciences,2008,34(3):278−290.. doi: 10.1016/j.cageo.2007.09.005
    [197] 于沿涛,孙效玉,杨宏贤,等. 三维层状矿床地质模型建立方法[J]. 中国矿山工程,2009,38(6):38−41.. doi: 10.3969/j.issn.1672-609X.2009.06.013

    YU Yantao,SUN Xiaoyu,YANG Hongxian,et al. 3D geologic model establishing method of beded deposit[J]. China Mine Engineering,2009,38(6):38−41.. doi: 10.3969/j.issn.1672-609X.2009.06.013
    [198] 张伟,林承焰,周明晖,等. 地质模型动态更新方法在关家堡油田的应用[J]. 石油勘探与开发,2010,37(2):220−225.. doi: 10.1016/S1876-3804(10)60027-4

    ZHANG Wei,LIN Chengyan,ZHOU Minghui,et al. Application of geological model dynamic updating method in Guanjiapu Oilfield,Dagang[J]. Petroleum Exploration and Development,2010,37(2):220−225.. doi: 10.1016/S1876-3804(10)60027-4
    [199] 李章林,吴冲龙,张夏林,等. 带精细属性特征的矿体实体模型动态构建方法[J]. 中国矿业大学学报,2011,40(6):990−994.

    LI Zhanglin,WU Chonglong,ZHANG Xialin,et al. Dynamical constructing the solid model for an ore–body with refined attributes[J]. Journal of China University of Mining & Technology,2011,40(6):990−994.
    [200] 陆斌. 基于孔间地震细分动态探测的透明工作面方法[J]. 煤田地质与勘探,2019,47(3):10−14.. doi: 10.3969/j.issn.1001-1986.2019.03.002

    LU Bin. Method of transparent working face based on dynamic detection of cross hole seismic subdivision[J]. Coal Geology & Exploration,2019,47(3):10−14.. doi: 10.3969/j.issn.1001-1986.2019.03.002
    [201] 程建远,朱梦博,王云宏,等. 煤炭智能精准开采工作面地质模型梯级构建及其关键技术[J]. 煤炭学报,2019,44(8):2285−2295.. doi: 10.13225/j.cnki.jccs.KJ19.0510

    CHENG Jianyuan,ZHU Mengbo,WANG Yunhong,et al. Cascade construction of geological model of longwall panel for intelligent precision coal mining and its key technology[J]. Journal of China Coal Society,2019,44(8):2285−2295.. doi: 10.13225/j.cnki.jccs.KJ19.0510
    [202] 田建川. 基于透明综采工作面采煤机自动截割系统的研发[J]. 内蒙古煤炭经济,2019(18):53−54.. doi: 10.3969/j.issn.1008-0155.2019.18.029

    TIAN Jianchuan. Research and development of shearer automatic cutting system based on transparent fully mechanized mining face[J]. Inner Mongolia Coal Economy,2019(18):53−54.. doi: 10.3969/j.issn.1008-0155.2019.18.029
    [203] 袁亮,张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报,2019,44(8):2277−2284.. doi: 10.13225/j.cnki.jccs.KJ19.0571

    YUAN Liang,ZHANG Pingsong. Development status and prospect of geological guarantee technology for precise coal mining[J]. Journal of China Coal Society,2019,44(8):2277−2284.. doi: 10.13225/j.cnki.jccs.KJ19.0571
    [204] 王存飞,荣耀. 透明工作面的概念、架构与关键技术[J]. 煤炭科学技术,2019,47(7):156−163.

    WANG Cunfei,RONG Yao. Concept,architecture and key technologies for transparent longwall face[J]. Coal Science and Technology,2019,47(7):156−163.
    [205] 刘再斌,刘程,刘文明,等. 透明工作面多属性动态建模技术[J]. 煤炭学报,2020,45(7):2628−2635.

    LIU Zaibin,LIU Cheng,LIU Wenming,et al. Multi–attribute dynamic modeling technique for transparent working face[J]. Journal of China Coal Society,2020,45(7):2628−2635.
    [206] MALLET J L. Discrete smooth interpolation in geometric modelling[J]. Computer Aided Design,1992,24(4):178−191.. doi: 10.1016/0010-4485(92)90054-E
    [207] OGOCHUKWU A. Multi–well real–time 3D structural modeling and horizontal well placement: An innovative workflow for shale gas reservoirs[C]//Society of Petroleum Engineers–Canadian Unconventional Resources Conference. 2011.
    [208] WATSON C,RICHARDSON J,WOOD B,et al. Improving geological and process model integration through TIN to 3D grid conversion[J]. Computers and Geosciences,2015,82:45−54.. doi: 10.1016/j.cageo.2015.05.010
    [209] HEKMATNEJAD A,EMERY X,VALLEJOS J A. Robust estimation of the fracture diameter distribution from the true trace length distribution in the Poisson–disc discrete fracture network model[J]. Computers and Geotechnics,2018,95:137−146.. doi: 10.1016/j.compgeo.2017.09.018
    [210] 吴胜和, 金振奎, 黄沧钿, 等. 储层建模[M]. 北京: 石油工业出版社, 1999.
    [211] 孙继平. “互联网+煤炭”与煤矿信息化[J]. 煤炭经济研究,2015,35(10):16−19.

    SUN Jiping. “Internet+coal”and coal mine informationalization[J]. Coal Economic Research,2015,35(10):16−19.
    [212] 奚砚涛. 基于开源技术的煤矿地测数据服务体系研究[D]. 徐州: 中国矿业大学, 2008.

    XI Yantao. Open source based study on geospatial data service system for coal mines[D]. Xuzhou: China University of Mining and Technology, 2008.
    [213] 冯晓斌. 5G+智能矿山建设实践[J]. 陕西煤炭,2022,41(6):205−210.

    FENG Xiaobin. Practice of 5G+ intelligent mine construction[J]. Shaanxi Coal,2022,41(6):205−210.
    [214] 顾清华,江松,李学现,等. 人工智能背景下采矿系统工程发展现状与展望[J]. 金属矿山,2022(5):10−25.

    GU Qinghua,JIANG Song,LI Xuexian,et al. Development status and prospect of mining system engineering under the background of artificial intelligence[J]. Metal Mine,2022(5):10−25.
    [215] 刘盛东,刘静,岳建华. 中国矿井物探技术发展现状和关键问题[J]. 煤炭学报,2014,39(1):19−25.. doi: 10.13225/j.cnki.jccs.2013.0587

    LIU Shengdong,LIU Jing,YUE Jianhua. Development status and key problems of Chinese mining geophysical technology[J]. Journal of China Coal Society,2014,39(1):19−25.. doi: 10.13225/j.cnki.jccs.2013.0587
  • 加载中
图(7)
计量
  • 文章访问数:  381
  • HTML全文浏览量:  24
  • PDF下载量:  170
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-10
  • 修回日期:  2023-01-10
  • 刊出日期:  2023-01-25
  • 网络出版日期:  2023-02-14

目录

    /

    返回文章
    返回