留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤田高密度三维地震勘探技术的发展现状及趋势

董守华 黄亚平 金学良 杨光明 聂爱兰 祁雪梅 程彦 吴海波

董守华,黄亚平,金学良,等. 煤田高密度三维地震勘探技术的发展现状及趋势[J]. 煤田地质与勘探,2023,51(2):273−282. doi: 10.12363/issn.1001-1986.23.03.0116
引用本文: 董守华,黄亚平,金学良,等. 煤田高密度三维地震勘探技术的发展现状及趋势[J]. 煤田地质与勘探,2023,51(2):273−282. doi: 10.12363/issn.1001-1986.23.03.0116
DONG Shouhua,HUANG Yaping,JIN Xueliang,et al. Development status and trend of high-density 3D seismic exploration technology for coal fields[J]. Coal Geology & Exploration,2023,51(2):273−282. doi: 10.12363/issn.1001-1986.23.03.0116
Citation: DONG Shouhua,HUANG Yaping,JIN Xueliang,et al. Development status and trend of high-density 3D seismic exploration technology for coal fields[J]. Coal Geology & Exploration,2023,51(2):273−282. doi: 10.12363/issn.1001-1986.23.03.0116

煤田高密度三维地震勘探技术的发展现状及趋势

doi: 10.12363/issn.1001-1986.23.03.0116
基金项目: 国家自然科学基金项目(42274180);国家重点研发计划(2021YFC2902003)
详细信息
    第一作者:

    董守华,1963年生,男,江苏盐城人,教授,从事煤田地震勘探与地球物理测井教学与科研工作. E-mail:zywt@cumt.edu.cn

    通信作者:

    黄亚平,1983年生,男,江苏如皋人,副教授,从事地震资料解释,地震岩石物理和人工智能地球物理研究. E-mail: yphuang@cumt.edu.cn

  • 中图分类号: P631.4

Development status and trend of high-density 3D seismic exploration technology for coal fields

  • 摘要: 传统煤矿采区三维地震勘探对复杂构造、下组煤层和灰岩探测的精度不高,很难满足煤矿安全高效开采对地质条件透明化、精准化探测的需求,煤田高密度三维地震勘探技术应运而生。中国煤田高密度三维地震勘探技术的发展历程可分为3个阶段:2005—2007年,探索与试验阶段;2008年—2014年:试验与示范阶段;2015年至今,推广与应用阶段。经过近20年的发展,煤田高密度三维地震勘探技术显著提高了复杂地质构造的探测精度,在解决特殊地质问题上也有了长足的进步。结合煤田高密度三维地震勘探技术相关研究成果与勘探实例,对煤田高密度三维地震勘探数据采集、处理和解释等环节技术的现状进行了综述。面向煤矿安全高效生产对小、微构造解译和岩性精准识别的迫切需求,提出地震观测系统的优化技术、连片处理技术、叠前深度偏移处理技术、OVT域的资料处理和解释技术、深度域地震资料解释技术、人工智能处理解释技术等,将是煤田高密度三维地震勘探技术发展的重点和热点方向。

     

  • 图  中国煤田高密度三维地震勘探技术发展历程

    Fig. 1  Development history of high-density 3D seismic exploration technology for coal fields in China

    图  常规与高密度三维地震观测系统玫瑰图[25]

    Fig. 2  Rose diagrams of conventional and high-density 3D seismic observation systems[25]

    图  小断层在高密度与常规三维地震时间剖面上的反映[3-4]

    Fig. 3  Reflections of small faults in high-density and conventional 3D seismic time profiles[3-4]

    图  常规和高密度三维地震勘探资料处理流程

    Fig. 4  Flow charts of data processing of conventional and high-density 3D seismic exploration

    图  叠前时间偏移和全方位角偏移成像叠前深度偏移均方根振幅切片[25](400 ms)

    Fig. 5  Root-mean-square amplitude slices (400 ms) of pre-stack time migration and full-azimuth migration imaging pre-stack depth migration[25]

    图  奥灰顶界面在高密度与常规地震剖面上的反映[3]

    Fig. 6  Reflections of the Ordovician top interface in the high-density and conventional seismic profiles[3]

    图  高密度分方位地震资料的椭圆拟合离心率分布图和小断层解释结果[51]

    Fig. 7  Ellipse fitted eccentricity distribution map and small-fault interpretation results of high-density azimuthal seismic data[51]

    图  地震波形分类的模型道及其分布[52]

    Fig. 8  Model traces for classification and distribution of seismic waveforms[52]

    表  1  淮北矿区典型常规三维地震勘探与高密度地震勘探采集参数对比

    Table  1  Comparison of data acquisition parameters between typical conventional 3D seismic exploration and high-density seismic exploration in the Huaibei coalfield

    项目 常规三维地震勘探 高密度三维地震勘探
    接收线数 8线接收 18线以上接收
    面元尺寸/(m×m) 10×10 5×5
    道距/m 20 10
    炮点距/m 20 10
    覆盖次数 16~24 ≥64
    接收线距/m 40 20、40、60
    炮线距/m 40 20、40、60
    纵横比 <0.5 ≥0.75
    下载: 导出CSV
  • [1] 袁亮. 我国煤炭主体能源安全高质量发展的理论技术思考[J]. 中国科学院院刊,2023,38(1):11−22.

    YUAN Liang. Theory and technology considerations on high−quality development of coal main energy security in China[J]. Bulletin of Chinese Academy of Sciences,2023,38(1):11−22.
    [2] 彭苏萍,赵惊涛,盛同杰,等. 煤田绕射地震勘探现状与进展[J]. 煤田地质与勘探,2023,51(1):1−20.

    PENG Suping,ZHAO Jingtao,SHENG Tongjie,et al. Status and advance of seismic diffraction exploration in coalfield[J]. Coal Geology & Exploration,2023,51(1):1−20.
    [3] 金学良,王琦. 煤矿采区高密度三维地震勘探模式与效果[J]. 煤田地质与勘探,2020,48(6):1−7.

    JIN Xueliang,WANG Qi. Pattern and effect of the high density 3D seismic exploration in coal mining districts[J]. Coal Geology & Exploration,2020,48(6):1−7.
    [4] 倪建明, 董守华, 王琦, 等. 中国东部煤田高密度三维地震勘探技术及应用[M]. 徐州: 中国矿业大学出版社, 2021.
    [5] 煤矿采区三维地震勘探规范: T/CGS 012—2022[S]. 北京: 中国标准出版社, 2022.
    [6] ONGKIEHONG L,ASKIN H J. Towards the universal seismic acquisition technique[J]. First Break,1988,6(2):46−63.
    [7] PECHOLCS P. Universal land acquisition 14 years later[J]. SEG Technical Program Expanded Abstracts, 1999, 21(1): 2478.
    [8] 刘振武,撒利明,董世泰,等. 中国石油高密度地震技术的实践与未来[J]. 石油勘探与开发,2009,36(2):129−135.. doi: 10.1016/S1876-3804(09)60115-4

    LIU Zhenwu,SA Liming,DONG Shitai,et al. Practices and expectation of high–density seismic exploration technology in CNPC[J]. Petroleum Exploration and Development,2009,36(2):129−135.. doi: 10.1016/S1876-3804(09)60115-4
    [9] 尚新民,芮拥军,石林光,等. 胜利油田高密度地震探索与实践[J]. 地球物理学进展,2018,33(4):1545−1553.

    SHANG Xinmin,RUI Yongjun,SHI Linguang,et al. Exploration and practice of high–density seismic survey in Shengli Oilfield[J]. Progress in Geophysics,2018,33(4):1545−1553.
    [10] 胡高伟,邓勇,潘光超,等. 双方位、高密度地震资料在文昌凹陷勘探中的应用[J]. 地球物理学进展,2019,34(6):2444−2450.

    HU Gaowei,DENG Yong,PAN Guangchao,et al. Application of two–azimuth and high–density 3D seismic data in the exploration of Wenchang depression[J]. Progress in Geophysics,2019,34(6):2444−2450.
    [11] 刘欣欣,吴国忱,梁锴. 单点高密度地震勘探技术研究综述[J]. 地球物理学进展,2009,24(4):1354−1366.

    LIU Xinxin,WU Guochen,LIANG Kai. The review of point–source/point–receiver high density seismic exploration technology[J]. Progress in Geophysics,2009,24(4):1354−1366.
    [12] 蔡希源,韩文功,于静,等. 罗家地区高密度三维地震勘探实例[J]. 石油地球物理勘探,2011,46(2):182−186.

    CAI Xiyuan,HAN Wengong,YU Jing,et al. A high density 3D seismic acquisition case in Luojia Area[J]. Oil Geophysical Prospecting,2011,46(2):182−186.
    [13] 王华忠. “两宽一高”油气地震勘探中的关键问题分析[J]. 石油物探,2019,58(3):313−324.

    WANG Huazhong. Key problem analysis in seismic exploration based on wide−azimuth,high−density,and broadband seismic data[J]. Geophysical Prospecting for Petroleum,2019,58(3):313−324.
    [14] 王海,赵会欣,晋志刚. 观测系统对高密度地震采集资料的影响[J]. 石油地球物理勘探,2009,44(2):131−135.

    WANG Hai,ZHAO Huixin,JIN Zhigang. Influence of geometry on high–density seismic data acquisition[J]. Oil Geophysical Prospecting,2009,44(2):131−135.
    [15] 张军华,张瑞芳,王静,等. 高密度资料面元细分与速度分析关系研究[J]. 地球物理学进展,2009,24(6):2079−2086.. doi: 10.3969/j.issn.1004-2903.2009.06.021

    ZHANG Junhua,ZHANG Ruifang,WANG Jing,et al. Research on bin–divisible processing and velocity analysis of high–density seismic data[J]. Progress in Geophysics,2009,24(6):2079−2086.. doi: 10.3969/j.issn.1004-2903.2009.06.021
    [16] 韩文功, 于静, 刘学伟. 高密度三维地震技术[M]. 北京: 地质出版社, 2017.
    [17] 王延光,尚新民,芮拥军. 单点高密度地震技术进展、实践与展望[J]. 石油物探,2022,61(4):571−590.

    WANG Yanguang,SHANG Xinmin,RUI Yongjun. Progress,practice and prospect of single–sensor high–density seismic technology[J]. Geophysical Prospecting for Petroleum,2022,61(4):571−590.
    [18] 郭旭升,刘金连,杨江峰,等. 中国石化地球物理勘探实践与展望[J]. 石油物探,2022,61(1):1−14.

    GUO Xusheng,LIU Jinlian,YANG Jiangfeng,et al. Geophysical exploration practices and perspectives at Sinopec[J]. Geophysical Prospecting for Petroleum,2022,61(1):1−14.
    [19] 金丹. 煤炭全数字高密度三维地震勘探关键技术研究[D]. 北京: 煤炭科学研究总院, 2015.

    JIN Dan. Research on key technology of the digital high–density 3D seismic exploration in coal mine[D]. Beijing: China Coal Research Institute, 2015.
    [20] 程彦,赵镨,汪洋,等. 煤矿采区全数字高密度三维地震勘探技术体系建立与发展研究[J]. 中国煤炭地质,2022,34(6):66−72.

    CHENG Yan,ZHAO Pu,WANG Yang,et al. Study on coalmine winning district full−digital and high−density 3D seismic prospecting technical system establishment and development[J]. Coal Geology of China,2022,34(6):66−72.
    [21] 赵镨,武喜尊. 高密度采集技术在西部煤炭资源勘探中的应用[J]. 中国煤炭地质,2008,20(6):11−14.

    ZHAO Pu,WU Xizun. High density acquisition technology and its application in Western China coal resource exploration[J]. Coal Geology of China,2008,20(6):11−14.
    [22] 程建远,张宪旭,蒋必辞,等. 从1D 到4D:煤田地震勘探的技术进步及启示[J]. 煤田地质与勘探,2023,51(1):247−258.

    CHENG Jianyuan,ZHANG Xianxu,JIANG Bici,et al. From 1D to 4D:Advances and thoughts on coal seismic technology[J]. Coal Geology & Exploration,2023,51(1):247−258.
    [23] 赵镨. 高分辨地震勘探技术是探测煤矿地质异常体的有效手段:《全国煤矿采区地震经验交流暨成果发布会》技术成果实例[J]. 中国煤田地质,1999,11(增刊1):86−90.

    ZHAO Pu. High–resolution seismic exploration technology is an effective means to detect geological anomalies in coal mines:An example of technical achievements of the National Coal Mining Area Seismic Experience Exchange and Results Conference[J]. Coal Geology of China,1999,11(Sup.1):86−90.
    [24] 赵立明,崔若飞. 全数字高密度三维地震勘探在煤田精细构造解释中的应用[J]. 地球物理学进展,2014,29(5):2332−2336.

    ZHAO Liming,CUI Ruofei. Application of digital high–density seismic exploration in fine structural interpretation in coalfield[J]. Progress in Geophysics,2014,29(5):2332−2336.
    [25] 杨光明,金学良,张宪旭,等. 宽频宽方位处理技术在淮北矿区全数字高密度地震勘探中的应用[J]. 煤田地质与勘探,2020,48(6):55−63.

    YANG Guangming,JIN Xueliang,ZHANG Xianxu,et al. Application of broadband and wide azimuth processing technology in full digital high density seismic exploration in Huaibei Mining Area[J]. Coal Geology & Exploration,2020,48(6):55−63.
    [26] 于杰. 叠前去噪技术在煤矿采区全数字高密度三维地震中的应用[J]. 煤田地质与勘探,2020,48(6):48−54.

    YU Jie. Application of pre–stack denoising technique in full digital high density 3D seismic technique in coal mining districts[J]. Coal Geology & Exploration,2020,48(6):48−54.
    [27] 张利兵,董守华. 煤矿采区地震勘探不同检波器接收试验与分析[J]. 煤田地质与勘探,2020,48(6):33−39.

    ZHANG Libing,DONG Shouhua. Reception test and analysis of different geophones in coal mining districts seismic exploration[J]. Coal Geology & Exploration,2020,48(6):33−39.
    [28] 孙文涛,方正. 我国煤田物探技术的回顾与展望[J]. 地球物理学报,1997,40(增刊1):362−368.

    SUN Wentao,FANG Zheng. Review and prospect of coal geophysical technology in China[J]. Chinese Journal of Geophysics,1997,40(Sup.1):362−368.
    [29] 刘俊杰,王彦春. 煤田数字高密度地震勘探的应用效果探析[J]. 中国煤炭,2013,39(1):37−39.

    LIU Junjie,WANG Yanchun. On application effectiveness of digital high–density seismic prospecting in coalfield[J]. China Coal,2013,39(1):37−39.
    [30] 方良才,赵伟,徐羽中,等. 淮南煤田三维地震勘探技术应用进展[J]. 中国煤炭地质,2010,22(8):73−82.

    FANG Liangcai,ZHAO Wei,XU Yuzhong,et al. Progression of 3D seismic prospecting technology application in Huainan Mining Area[J]. Coal Geology of China,2010,22(8):73−82.
    [31] 衡雪丽,姚精选. 高密度三维地震勘探在晋城煤业集团赵庄矿的应用[J]. 煤矿现代化,2011(4):39−41.

    HENG Xueli,YAO Jingxuan. Application of high–density 3D seismic exploration in Zhaozhuang Mine of Jincheng Coal Industry Group[J]. Coal Mine Modernization,2011(4):39−41.
    [32] 张建军, 徐礼贵, 黄元溢, 等. 一次高密度全方位煤矿三维地震采集探索[C]//2015年物探技术研讨会论文集. 中国石油学会, 2015.
    [33] 王琦. 全数字高密度三维地震勘探技术在淮北矿区的应用[J]. 煤田地质与勘探,2018,46(增刊1):41−45.

    WANG Qi. Application of all digital high density 3D seismic exploration technology in Huaibei Mining Area[J]. Coal Geology & Exploration,2018,46(Sup.1):41−45.
    [34] 吴永辉,虞永征,吴访. 煤矿三维地震小断层精细解释方法与技术[J]. 工程地球物理学报,2020,17(2):177−183.

    WU Yonghui,YU Yongzheng,WU Fang. Fine interpretation method and technology of 3D seismic small faults in coal mines[J]. Chinese Journal of Engineering Geophysics,2020,17(2):177−183.
    [35] 刘二鹏. 高密度地震采集技术研究: 以长治某煤矿采区为例[D]. 太原: 太原理工大学, 2011.

    LIU Erpeng. High–density seismic acquisition technology: Case study of a coal mining area in Changzhi[D]. Taiyuan: Taiyuan University of Technology, 2011.
    [36] 王超越. 煤田高密度三维地震勘探观测系统面元属性评价与优选[D]. 徐州: 中国矿业大学, 2021.

    WANG Chaoyue. Evaluation and optimization of bin attributes for coalfield high–density 3D seismic exploration acquisition geometry[D]. Xuzhou: China University of Mining and Technology, 2021.
    [37] 刘俊杰,丹. 穆基诺. 高密度地震勘探的激发和接收技术探讨[J]. 中国煤炭地质,2010,22(8):25−28.

    LIU Junjie,MOUGENOT D. A discussion on high density seismic prospecting shot and receiving technologies[J]. Coal Geology of China,2010,22(8):25−28.
    [38] 王超越,董守华. 高密度三维地震观测系统炮检距均匀性评价[J]. 地球物理学进展,2020,35(6):2220−2227.. doi: 10.6038/pg2020EE0226

    WANG Chaoyue,DONG Shouhua. Evaluation of high–density 3D seismic layout offset distance uniformity[J]. Progress in Geophysics,2020,35(6):2220−2227.. doi: 10.6038/pg2020EE0226
    [39] 程建远,王千遥,朱书阶. 煤矿采区高密度三维地震采集参数讨论[J]. 煤田地质与勘探,2020,48(6):25−32.. doi: 10.3969/j.issn.1001-1986.2020.06.004

    CHENG Jianyuan,WANG Qianyao,ZHU Shujie. Discussion on parameters of high density 3D seismic exploration acquisition in coal mining districts[J]. Coal Geology & Exploration,2020,48(6):25−32.. doi: 10.3969/j.issn.1001-1986.2020.06.004
    [40] 金丹,程建远,张宪旭. 高密度全数字地震勘探技术在煤田中的应用及效果分析[J]. 煤炭技术,2015,34(8):89−92.

    JIN Dan,CHENG Jianyuan,ZHANG Xianxu. Application and effect analysis of single–point high–density digital seismic exploration in coal seismic exploration[J]. Coal Technology,2015,34(8):89−92.
    [41] 徐晓培. 高密度三维地震在超浅层煤田勘探中的应用[J]. 中国煤炭地质,2018,30(12):96−101.. doi: 10.3969/j.issn.1674-1803.2018.12.18

    XU Xiaopei. Application of high density seismic prospecting in ultra–shallow coalfield exploration[J]. Coal Geology of China,2018,30(12):96−101.. doi: 10.3969/j.issn.1674-1803.2018.12.18
    [42] 刘俊,赵伟,韩必武. 淮南矿区高精度三维地震勘探技术应用[J]. 煤田地质与勘探,2020,48(6):8−14.. doi: 10.3969/j.issn.1001-1986.2020.06.002

    LIU Jun,ZHAO Wei,HAN Biwu. Application of high–precision 3D seismic exploration technology in Huainan Mining Area[J]. Coal Geology & Exploration,2020,48(6):8−14.. doi: 10.3969/j.issn.1001-1986.2020.06.002
    [43] 李文花. 宽方位地震资料OVT处理技术在煤田地震勘探中的研究与应用[J]. 工程地球物理学报,2020,17(3):300−307.

    LI Wenhua. Research and application of wide azimuth seismic data OVT processing technology to coal seismic exploration[J]. Chinese Journal of Engineering Geophysics,2020,17(3):300−307.
    [44] 李文花. OVT 域5D 数据规则化处理方法在榆林某矿中的研究与应用[J]. 中国煤炭地质,2020,32(5):53−57.

    LI Wenhua. Research and application of OVT domain 5D data regularization processing in a Yulin Mine[J]. Coal Geology of China,2020,32(5):53−57.
    [45] 田忠斌,李娟,申有义,等. OVT域处理技术在沁水盆地深部煤层气勘探中的应用[J]. 煤田地质与勘探,2020,48(6):93−102.

    TIAN Zhongbin,LI Juan,SHEN Youyi,et al. The application of OVT domain processing technology in deep CBM exploration in Qinshui Basin[J]. Coal Geology & Exploration,2020,48(6):93−102.
    [46] 蔡文芮. OVT域五维规则化在煤田高密度数据处理中的应用[J]. 煤炭技术,2021,40(12):86−90.

    CAI Wenrui. Application of five–dimensional regularization in OVT domain in high–density data processing of coal fields[J]. Coal Technology,2021,40(12):86−90.
    [47] 蔡文芮. OVT域叠前时间偏移在煤田高密度三维地震勘探中的应用[J]. 能源与环保,2021,43(10):142−148.

    CAI Wenrui. Application of OVT prestack migration in high density 3D seismic of mine field[J]. China Energy and Environmental Protection,2021,43(10):142−148.
    [48] 倪新辉,刘天放. 地震勘探技术预测奥灰岩溶裂隙发育带[J]. 中国煤田地质,1997,9(4):59−61.

    NI Xinhui,LIU Tianfang. Prediction of Ordovician limestone karst fissure development zone by seismic exploration technology[J]. Coal Geology of China,1997,9(4):59−61.
    [49] 郝东青. 观音堂煤矿奥灰含水层突水危险性预测评价与综合防治技术研究[D]. 徐州: 中国矿业大学, 2019.

    HAO Dongqing. Prediction and evaluation of water inrush risk in Ordovician limestone aquifer of Guanyintang coal mine and comprehensive prevention and control technology research[D]. Xuzhou: China University of Mining and Technology, 2019.
    [50] 孟凡彬. 煤矿采区高密度三维地震深度域资料解释方法[J]. 煤田地质与勘探,2020,48(6):80−86.. doi: 10.3969/j.issn.1001-1986.2020.06.011

    MENG Fanbin. Interpretation method of high density 3D seismic depth domain data in coal mining districts[J]. Coal Geology & Exploration,2020,48(6):80−86.. doi: 10.3969/j.issn.1001-1986.2020.06.011
    [51] 吴斌. 煤田小断层叠后地震方位分析及其应用[D]. 徐州: 中国矿业大学, 2021.

    WU Bin. Analysis and application of seismic azimuth after stacking of small faults in coalfield[D]. Xuzhou: China University of Mining and Technology, 2021.
    [52] 曾爱平,张嘉玮,任恩明,等. 基于VMD 和SVM 的煤厚预测方法研究[J]. 煤田地质与勘探,2021,49(6):243−250.

    ZENG Aiping,ZHANG Jiawei,REN Enming,et al. Research on the coal thickness prediction method based on VMD and SVM[J]. Coal Geology & Exploration,2021,49(6):243−250.
    [53] 程彦,赵镨,林建东,等. 地震波形分类技术在地质异常体解释中的应用[J]. 煤田地质与勘探,2020,48(6):87−92.. doi: 10.3969/j.issn.1001-1986.2020.06.012

    CHENG Yan,ZHAO Pu,LIN Jiandong,et al. Application of seismic waveform classification technology in interpretation of geological abnormal body[J]. Coal Geology & Exploration,2020,48(6):87−92.. doi: 10.3969/j.issn.1001-1986.2020.06.012
    [54] 袁亮,张平松. 煤矿透明地质模型动态重构的关键技术与路径思考[J]. 煤炭学报,2023,48(1):1−14.

    YUAN Liang,ZHANG Pingsong. Key technology and path thinking of dynamic reconstruction of mine transparent geological model[J]. Journal of China Coal Society,2023,48(1):1−14.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  389
  • HTML全文浏览量:  27
  • PDF下载量:  197
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-10
  • 修回日期:  2023-02-10
  • 刊出日期:  2023-02-25
  • 网络出版日期:  2023-03-20

目录

    /

    返回文章
    返回