留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤岩体孔隙结构应力特征的数值模拟研究

王刚 江成浩 陈雪畅

王刚, 江成浩, 陈雪畅. 煤岩体孔隙结构应力特征的数值模拟研究[J]. 煤田地质与勘探, 2021, 49(1): 57-64,80. doi: 10.3969/j.issn.1001-1986.2021.01.006
引用本文: 王刚, 江成浩, 陈雪畅. 煤岩体孔隙结构应力特征的数值模拟研究[J]. 煤田地质与勘探, 2021, 49(1): 57-64,80. doi: 10.3969/j.issn.1001-1986.2021.01.006
WANG Gang, JIANG Chenghao, CHEN Xuechang. Numerical simulation of pore structure stress characteristics of coal and rock mass[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(1): 57-64,80. doi: 10.3969/j.issn.1001-1986.2021.01.006
Citation: WANG Gang, JIANG Chenghao, CHEN Xuechang. Numerical simulation of pore structure stress characteristics of coal and rock mass[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(1): 57-64,80. doi: 10.3969/j.issn.1001-1986.2021.01.006

煤岩体孔隙结构应力特征的数值模拟研究

doi: 10.3969/j.issn.1001-1986.2021.01.006
基金项目: 

国家自然科学基金项目(51674158,51974176);山东省高等学校青创科技支持计划项目(2019KJH006);山东省自然科学杰出青年基金项目(ZR2020JQ22)

详细信息
    第一作者:

    王刚,1984年生,男,山东临沂人,博士,教授,从事煤矿灾害预测与防治研究.E-mail:gang.wang@sdust.edu.cn

  • 中图分类号: TD712

Numerical simulation of pore structure stress characteristics of coal and rock mass

  • 摘要: 为了探究不同加载方式下煤岩体孔隙周围的应力分布规律,通过CT三维重建技术构建含有不同孔隙形状的煤岩体骨架模型,并利用ABAQUS软件进行单轴、三轴压缩实验模拟。结果表明,球状孔隙结构在单轴压缩条件下,上下区域表现为拉应力集中,左右区域表现为压应力集中。不同倾角的椭球状孔隙结构其长短轴区域的应力集中类型不同。单轴压缩过程中,轴向加载速度影响球状孔隙周围的Mises应力峰值和σ1应力的变化;三轴压缩过程中,孔隙结构依然经历了压密、弹性、塑性和破坏4个阶段,较低的围压条件使得弹性阶段“应力-应变”曲线与“应力-时间”曲线高度重合。从微观角度为煤岩体力学研究提供了一种新的方法和思路。

     

  • [1] LIU Qiang,NIE Wen,HUA Yun,et al. Research on tunnel ventilation systems:dust diffusion and pollution behaviour by air curtains based on CFD technology and field measurement[J]. Building and Environment,2019,147:444-460.
    [2] ALEXEEV A D,REVVA V N,ALYSHEV N A,et al. True triaxial loading apparatus and its application to coal outburst prediction[J]. International Journal of Coal Geology,2004,58(4):245-250.
    [3] SUN Huan,LIU Xiaoli,ZHU J. B. Correlational fractal characterisation of stress and acoustic emission during coal and rock failure under multilevel dynamic loading[J]. International Journal of Rock Mechanics and Mining Sciences,2019,117:1-10.
    [4] LIU Shumin,LI Xuelong,LI Zhonghui,et al. Energy distribution and fractal characterization of Acoustic Emission(AE) during coal deformation and fracturing[J]. Measurement,2019,136:122-131.
    [5] ZHAO Jun,FENG Xiating,ZHANG Xiwei,et al. Brittle and ductile creep behavior of Jinping marble under true triaxial stress[J]. Engineering Geology,2019,258:105157.
    [6] 屈丽娜,李波. 基于西原加速模型的煤体蠕变特性试验[J]. 煤田地质与勘探,2019,47(6):115-120.

    QU Lina,LI Bo. Nishihara acceleration model-based experiment of creep characteristics of coal[J]. Coal Geology & Exploration,2019,47(6):115-120.
    [7] RENNER J,EVANS B,SIDDIQI G. Dislocation creep of calcite aggregates[J]. Journal of Geophysical Research:Solid Earth,2002,107(B12).
    [8] 余杰,刘晓辉,郝齐钧. 不同围压下煤岩声发射基本特性及损伤演化[J]. 煤田地质与勘探,2020,48(3):128-136.

    YU Jie,LIU Xiaohui,HAO Qijun. Acoustic emission characteristics and damage evolution of coal-rock under different confining pressures[J]. Coal Geology & Exploration,2020,48(3):128-136.
    [9] WU Mengmeng,WANG Jianfeng. Reassembling fractured sand particles using fracture-region matching algorithm[J]. Powder Technology,2018,338:55-66.
    [10] XU Hong,FENG Xiating,YANG Chengxiang,et al. Influence of initial stresses and unloading rates on the deformation and failure mechanism of Jinping marble under true triaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences,2019,117:90-104.
    [11] YANG Xinxiang,KURU E,GINGRAS M,et al. CT-CFD integrated investigation into porosity and permeability of neat early-age well cement at downhole condition[J]. Construction and Building Materials,2019,205:73-86.
    [12] DURR N,SAUER M,HIERMAIER S. A numerical study on mesoscale simulation of quartzite and sandstone under shock loading[J]. International Journal of Impact Engineering,2017,108:73-88.
    [13] ZHANG Shihuai,WU Shunchuan,DUAN Kang. Study on the deformation and strength characteristics of hard rock under true triaxial stress state using bonded-particle model[J]. Computers and Geotechnics,2019,112:1-16.
    [14] SUN Wei,HOU Kepeng,YANG Zhiquan,et al. X-ray CT three-dimensional reconstruction and discrete element analysis of the cement paste backfill pore structure under uniaxial compression[J]. Construction and Building Materials,2017,138:69-78.
    [15] 丁鑫,肖晓春,吴迪,等. 不同加载路径煤岩破裂过程声-电荷复合信号特性[J]. 煤炭学报,2016,41(增刊2):359-368.

    DING Xin,XIAO Xiaochun,WU Di,et al. Study on compound signal characteristics of acoustic emission and charge induction in coal rock failure under different loading paths[J]. Journal of China Coal Society,2016,41(Sup.2):359-368.
    [16] ZHAO Yixin,SONG Honghua,LIU Shimin,et al. Mechanical anisotropy of coal with considerations of realistic microstructures and external loading directions[J]. International Journal of Rock Mechanics and Mining Sciences,2019,116:111-121.
    [17] SUN Huafei,YANG Yongming,JU Yang,et al. Numerical analysis of deformation,failure and energy release mechanisms of fractured coal rock under unloading conditions[J]. Journal of China Coal Society,2014,39(2):258-272.
    [18] PENG Jun,WONG L N Y,THE C I. A re-examination of slenderness ratio effect on rock strength:Insights from DEM grain-based modelling[J]. Engineering Geology,2018,246:245-254.
    [19] 孙华飞,杨永明,鞠杨,等. 开挖卸荷条件下煤岩变形破坏与能量释放的数值分析[J]. 煤炭学报,2014,39(2):258-272.

    SUN Huafei,YANG Yongming,JU Yang,et al. Numerical analysis of deformation,failure and energy release mechanisms of fractured coal rock under unloading conditions[J]. Journal of China Coal Society,2014,39(2):258-272.
    [20] 刘京红,姜耀东,赵毅鑫,等. 煤岩破裂过程CT图像的分形描述[J]. 北京理工大学学报,2012,32(12):1219-1222.

    LIU Jinghong,JIANG Yaodong,ZHAO Yixin,et al. Fractal description of coal damage process based on CT image[J]. Transactions of Beijing Institute of Technology,2012,32(12):1219-1222.
    [21] 王会杰. 深部裂隙煤岩渗流性质的试验研究[D]. 北京:中国矿业大学(北京),2013.

    WANG Huijie. Experimental study of fluid seepage in fractured coal under simulated deep coal mining[D]. Beijing:China University of Mining and Technology(Beijing),2013.
    [22] 王刚,杨鑫祥,张孝强,等. 基于CT三维重建与逆向工程技术的煤体数字模型的建立[J]. 岩土力学,2015,36(11):3322-3328.

    WANG Gang,YANG Xinxiang,ZHANG Xiaoqiang,et al. Establishment of digital coal model using computed tomography based on reverse engineering technology and three-dimensional reconstruction[J]. Rock and Soil Mechanics,2015,36(11):3322-3328.
    [23] 王学滨. 加载速度对断层-围岩系统变形及快速回跳的影响[J]. 岩土力学,2006,27(2):242-246.

    WANG Xuebin. Numerical simulation of influence of loading rate on deformation characteristics and snap-back for fault band and elastic rock system[J]. Rock and Soil Mechanics,2006,27(2):242-246.
    [24] 何俊,潘结南,王安虎. 三轴循环加卸载作用下煤样的声发射特征[J]. 煤炭学报,2014,39(1):84-90.

    HE Jun,PAN Jienan,WEANG Anhu. Acoustic emission characteristics of coal specimen under triaxial cyclic loading and unloading[J]. Journal of China Coal Society,2014,39(1):84-90.
    [25] FENG Junjun,WANG Enyuan,CHEN Xia,et al. Energy dissipation rate:An indicator of coal deformation and failure under static and dynamic compressive loads[J]. International Journal of Mining Science and Technology,2018,28(3):397-406.
    [26] 彭瑞东,鞠杨,高峰,等. 三轴循环加卸载下煤岩损伤的能量机制分析[J]. 煤炭学报,2014,39(2):245-252.

    PENG Ruidong,JU Yang,GAO Feng,et al. Energy analysis on damage of coal under cyclical triaxial loading and unloading conditions[J]. Journal of China Coal Society,2014,39(2):245-252.
    [27] ZHAO Gaofeng,RUSSELL A R,ZHAO Xiaobao,et al. Strain rate dependency of uniaxial tensile strength in Gosford sandstone by the distinct lattice spring model with X-ray micro CT[J]. International Journal of Solids and Structures,2014,51(7/8):1587-1600.
  • 加载中
计量
  • 文章访问数:  180
  • HTML全文浏览量:  29
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-25
  • 修回日期:  2020-12-28
  • 发布日期:  2021-02-25

目录

    /

    返回文章
    返回