留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矿井下顶板梳状长钻孔分段压裂强化瓦斯抽采实践

贾秉义 陈冬冬 吴杰 孙四清 王建利 赵继展 张杰

贾秉义, 陈冬冬, 吴杰, 孙四清, 王建利, 赵继展, 张杰. 煤矿井下顶板梳状长钻孔分段压裂强化瓦斯抽采实践[J]. 煤田地质与勘探, 2021, 49(2): 70-76. doi: 10.3969/j.issn.1001-1986.2021.02.009
引用本文: 贾秉义, 陈冬冬, 吴杰, 孙四清, 王建利, 赵继展, 张杰. 煤矿井下顶板梳状长钻孔分段压裂强化瓦斯抽采实践[J]. 煤田地质与勘探, 2021, 49(2): 70-76. doi: 10.3969/j.issn.1001-1986.2021.02.009
JIA Bingyi, CHEN Dongdong, WU Jie, SUN Siqing, WANG Jianli, ZHAO Jizhan, ZHANG Jie. Practice of enhanced gas extraction by staged fracturing with comb-shaped long hole in coal mine roof[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(2): 70-76. doi: 10.3969/j.issn.1001-1986.2021.02.009
Citation: JIA Bingyi, CHEN Dongdong, WU Jie, SUN Siqing, WANG Jianli, ZHAO Jizhan, ZHANG Jie. Practice of enhanced gas extraction by staged fracturing with comb-shaped long hole in coal mine roof[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(2): 70-76. doi: 10.3969/j.issn.1001-1986.2021.02.009

煤矿井下顶板梳状长钻孔分段压裂强化瓦斯抽采实践

doi: 10.3969/j.issn.1001-1986.2021.02.009
基金项目: 

国家科技重大专项任务(2016ZX05045-002-002);中煤科工集团西安研究院有限公司科技创新基金项目(2018XAYZD10,2018XAYMS08)

详细信息
    第一作者:

    贾秉义,1988年生,男,山西朔州人,博士,助理研究员,从事矿井地质和矿井瓦斯防治工作.E-mail:jiabingyiccteg@126.com

    通信作者:

    陈冬冬,1985年生,男,河南项城人,硕士,副研究员,从事矿井瓦斯防治工作.E-mail:Chendongdong@cctegxian.com

  • 中图分类号: TD713

Practice of enhanced gas extraction by staged fracturing with comb-shaped long hole in coal mine roof

  • 摘要: 为了解决碎软煤层本煤层钻孔施工困难,瓦斯抽采浓度低,抽采效果差,无法实现大面积区域预抽的问题,在现有煤矿井下定向钻进技术和水力压裂技术的基础上,结合前期研究成果,提出了顶板梳状长钻孔分段水力压裂技术,并在韩城矿区桑树坪二号井进行了现场试验。现场施工顶板梳状长钻孔主孔长度588 m,包含8个分支孔,钻孔总进尺1 188 m,主孔距煤层0~3.28 m,平面上覆盖约12.5 m。采用不动管柱分段水力压裂工艺,分4段进行水力压裂施工,累计注水2 012 m3,最大泵注压力8.74 MPa。压裂后最大影响半径大于30 m,且裂缝主要位于钻孔下方,向煤层延伸。压裂钻孔稳定抽采阶段瓦斯抽采纯量1.18 m3/min,抽采瓦斯体积分数平均43.54%。顶板梳状长钻孔分段水力压裂钻孔瓦斯抽采纯量是水力割缝钻孔的1.2倍,是本煤层顺层钻孔的4.0倍。试验结果表明,顶板梳状长钻孔分段水力压裂技术可有效避免本煤层常规钻孔施工过程中存在的塌孔、卡钻、喷孔等问题,实现了碎软低渗煤层大面积区域瓦斯预抽,为碎软低渗煤层区域瓦斯预抽提供了新思路和新方法。

     

  • [1] 程远平,付建华,俞启香. 中国煤矿瓦斯抽采技术的发展[J]. 采矿与安全工程学报,2009,26(2):127-139.

    CHENG Yuanping,FU Jianhua,YU Qixiang. Development of gas extraction technology in coal mines of China[J]. Journal of Mining & Safety Engineering,2009,26(2):127-139.
    [2] 袁亮,张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报,2019,44(8):2277-2284.

    YUAN Liang,ZHANG Pingsong. Development status and prospect of geological guarantee technology for precise coal mining[J]. Journal of China Coal Society,2019,44(8):2277-2284.
    [3] 方俊,李泉新,许超,等. 松软突出煤层瓦斯抽采钻孔施工技术及发展趋势[J]. 煤炭科学技术,2018,46(5):130-137.

    FANG Jun,LI Quanxin,XU Chao,et al. Construction technology and development tendency of gas drainage borehole in soft and outburst seam[J]. Coal Science and Technology,2018,46(5):130-137.
    [4] 王永龙,孙玉宁,王振锋,等. 松软突出煤层钻进钻孔堵塞力学特征[J]. 煤炭学报,2015,40(增刊1):119-125.

    WANG Yonglong,SUN Yuning,WANG Zhenfeng,et al. Mechanical characteristic of borehole clogging drilling in soft and outburst coal seam[J]. Journal of China Coal Society,2015,40(Sup.1):119-125.
    [5] 王广宏. 底板定向长钻孔技术预抽煤巷条带瓦斯应用试验[J]. 能源与环保,2019,41(5):1-4.

    WANG Guanghong. Application test on pre-drainage strip gas in coal roadway based on floor directional long borehole technology[J]. China Energy and Environmental Protection,2019,41(5):1-4.
    [6] 王宏图,江记记,王再清,等. 本煤层单一顺层瓦斯抽采钻孔的渗流场数值模拟[J]. 重庆大学学报,2011,34(4):24-29.

    WANG Hongtu,JIANG Jiji,WANG Zaiqing,et al. Numerical simulation of seepage field of gas extraction drilling of single bedding of mining-coal bed[J]. Journal of Chongqing University,2011,34(4):24-29.
    [7] 蒋恒. 三软煤层顺层瓦斯预抽钻孔变形规律研究及其控制[J]. 能源与环保,2019,41(8):15-18.

    JIANG Heng. Study on deformation law and control of pre-drainage borehole of bedding gas of Three Soft and thick coal seam[J]. China Energy and Environmental Protection,2019,41(8):15-18.
    [8] 张杰,姚宁平,李乔乔. 煤矿井下定向钻进技术在矿井地质勘探中的应用[J]. 煤矿安全,2013,44(10):131-134.

    ZHANG Jie,YAO Ningping,LI Qiaoqiao. Application of directional drilling technology in mines geological exploration[J]. Safety in Coal Mines,2013,44(10):131-134.
    [9] 孙阳,赵永哲,朱昌淮,等. 定向钻进工艺技术在探查疏放灰岩水中的应用[J]. 煤田地质与勘探,2019,47(增刊1):117-121.

    SUN Yang,ZHAO Yongzhe,ZHU Changhuai,et al. Application of long directional borehole technology for exploration and drainage in limestone aquifer[J]. Coal Geology & Exploration,2019,47(Sup.1):117-121.
    [10] 张群,葛春贵,李伟,等. 碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J]. 煤炭学报,2018,43(1):150-159.

    ZHANG Qun,GE Chungui,LI Wei,et al. A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata-in horizontal well and staged hydraulic fracture[J]. Journal of China Coal Society,2018,43(1):150-159.
    [11] 王建利,陈冬冬,贾秉义. 韩城矿区碎软煤层顶板梳状孔水力压裂瓦斯抽采工程实践[J]. 煤田地质与勘探,2018,46(4):17-21.

    WANG Jianli,CHEN Dongdong,JIA Bingyi. Practice of gas drainage by hydraulic fracturing of roof pectination boreholes in broken soft coal seam in Hancheng mining area[J]. Coal Geology & Exploration,2018,46(4):17-21.
    [12] 郭春生,徐超,葛勇,等.阳泉矿区松软低透煤层底板穿层钻孔抽采时间优化[J]. 西安科技大学学报,2019,39(5):875-881.

    GUO Chunsheng,XU Chao,GE Yong,et al. Time optimization of gas drainage from floor crossing boreholes in soft low-permeability coal seams of Yangquan mining area[J]. Journal of Xi'an University of Science and Technology,2019,39(5):875-881.
    [13] 王林征,谭志宏. 底板穿层钻孔水力压裂破裂压力影响因素研究[J]. 煤矿安全,2016,47(3):1-4.

    WANG Linzheng,TAN Zhihong. Study on hydraulic fracturing breakdown pressure influencing factors for floor crossing borehole[J]. Safety in Coal Mines,2016,47(3):1-4.
    [14] 李国栋,郑凯歌,陈冬冬. 赵固二矿本煤层定向长钻孔水力压裂增透技术研究[J]. 煤炭工程,2019,51(7):53-57.

    LI Guodong,ZHENG Kaige,CHEN Dongdong. Study on permeability enhancement technology through overall hydraulic fracturing of long directional hole in Zhaogu No.2 coal mine mining coal seam[J]. Coal Engineering,2019,51(7):53-57.
    [15] 龙威成,赵乐凯,陈冬冬,等. 顺煤层定向长钻孔水力压裂煤层增透技术及试验研究[J]. 河南理工大学学报(自然科学版),2019,38(3):10-15.

    LONG Weicheng,ZHAO Lekai,CHEN Dongdong,et al. Experimental study on coal seam permeability enhancement by directional long borehole hydraulic fracturing along seam direction[J]. Journal of Henan Polytechnic University(Natural Science),2019,38(3):10-15.
    [16] 张俭. 碎软低透突出煤层定向长钻孔整体水力压裂高效增透技术[J]. 中国煤炭,2018,44(7):101-105.

    ZHANG Jian. High effective technology through overall hydraulic fracturing of long directional borehole in crushed and soft coal seam with low permeability and outburst potential[J]. China Coal,2018,44(7):101-105.
    [17] 孙四清,张群,闫志铭,等. 碎软低渗高突煤层井下长钻孔整体水力压裂增透工程实践[J]. 煤炭学报,2017,42(9):2337-2344.

    SUN Siqing,ZHANG Qun,YAN Zhiming,et al. Practice of permeability enhancement through overall hydraulic fracturing of long hole in outburst-prone soft crushed coal seam with low permeability[J]. Journal of China Coal Society,2017,42(9):2337-2344.
    [18] 付江伟,王公忠,李鹏,等. 顶板水力致裂抽采瓦斯技术研究[J]. 中国安全科学学报,2016,26(1):109-115.

    FU Jiangwei,WANG Gongzhong,LI Peng,et al. Research on technique for gas frainage based on roof hydraulic fracturing[J]. China Safety Science Journal,2016,26(1):109-115.
    [19] 许耀波,郭盛强. 软硬煤复合的煤层气水平井分段压裂技术及应用[J]. 煤炭学报,2019,44(4):1169-1177

    . XU Yaobo,GUO Shengqiang. Technology and application of staged fracturing in coalbed methane horizontal well of soft and hard coal composite coal seam[J]. Journal of China Coal Society,2019,44(4):1169-1177
    [20] 刘永茜,张书林,舒龙勇. 吸附-解吸状态下煤层气运移机制[J]. 煤田地质与勘探,2019,47(4):12-18.

    LIU Yongqian,ZHANG Shulin,SHU Longyong. Coalbed methane migration mechanism under adsorption-desorption condition in coal[J]. Coal Geology & Exploration,2019,47(4):12-18.
    [21] 黄炳香,陈树亮,程庆迎. 煤层压裂开采与治理区域瓦斯的基本问题[J]. 煤炭学报,2016,41(1):128-137.

    HUANG Bingxiang,CHEN Shuliang,CHENG Qingying. Basic problems of hydraulic fracturing for mining and control zone gas in coal seams[J]. Journal of China Coal Society,2016,41(1):128-137.
    [22] 李浩哲,姜在炳,舒建生,等. 水力裂缝在煤岩界面处穿层扩展规律的数值模拟[J]. 煤田地质与勘探,2020,48(2):106-113.

    LI Haozhe,JIANG Zaibing,SHU Jiansheng,et al. Numerical simulation of layer-crossing propagation behavior of hydraulic fractures at coal-rock interface[J]. Coal Geology & Exploration,2020,48(2):106-113.
    [23] 孙四清,郑凯歌. 井下高压水射流切割煤层增透效果数值模拟[J]. 煤田地质与勘探,2017,45(2):45-49.

    SUN Siqing,ZHENG Kaige. Numerical simulation study on permeability enhancement effect of high pressure water cutting coal seam[J]. Coal Geology & Exploration,2017,45(2):45-49.
    [24] 范涛,程建远,王保利,等. 应用瞬变电磁虚拟波场成像方法检测井下煤层气水力压裂效果的试验研究[J]. 煤炭学报,2016,41(7):1762-1768.

    FAN Tao,CHENG Jianyuan,WANG Baoli,et al. Experimental study on imaging method of TEM pseudo wave-field to detect the effect of underground coal-bed gas hydraulic fracturing[J]. Journal of China Coal Society,2016,41(7):1762-1768.
    [25] 于景邨,苏本玉,薛国强,等. 煤层顶板致灾水体井上下双磁源瞬变电磁响应及应用[J]. 煤炭学报,2019,44(8):2356-2360.

    YU Jingcun,SU Benyu,XUE Guoqiang,et al. Transient electromagnetic response of double magnetic source in coalseam roof disaster caused by water and its application[J]. Journal of China Coal Society,2019,44(8):2356-2360.
    [26] 陈同刚,汪启年,朱将波,等. 煤层及其顶底板岩石力学性质对水力压裂裂缝延伸的控制[J]. 华东地质,2018,39(3):212-217.

    CHEN Tonggang,WANG Qinian,ZHU Jiangbo,et al. Controlof mechanical properties of coal seam and its roof and floor rocks over the crack extension during hydraulic fracturing[J]. East China Geology,2018,39(3):212-217.
  • 加载中
计量
  • 文章访问数:  188
  • HTML全文浏览量:  26
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-05
  • 发布日期:  2021-04-25

目录

    /

    返回文章
    返回