留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

华亭烟煤地下气化污染物分布及富集规律

朱利辉 冯备战 胡永兴 王明忠

朱利辉, 冯备战, 胡永兴, 王明忠. 华亭烟煤地下气化污染物分布及富集规律[J]. 煤田地质与勘探, 2021, 49(3): 18-25. doi: 10.3969/j.issn.1001-1986.2021.03.003
引用本文: 朱利辉, 冯备战, 胡永兴, 王明忠. 华亭烟煤地下气化污染物分布及富集规律[J]. 煤田地质与勘探, 2021, 49(3): 18-25. doi: 10.3969/j.issn.1001-1986.2021.03.003
ZHU Lihui, FENG Beizhan, HU Yongxing, WANG Mingzhong. Distribution and enrichment of pollutants from underground gasification of bituminous coal in Huating Mining Area[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 18-25. doi: 10.3969/j.issn.1001-1986.2021.03.003
Citation: ZHU Lihui, FENG Beizhan, HU Yongxing, WANG Mingzhong. Distribution and enrichment of pollutants from underground gasification of bituminous coal in Huating Mining Area[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 18-25. doi: 10.3969/j.issn.1001-1986.2021.03.003

华亭烟煤地下气化污染物分布及富集规律

doi: 10.3969/j.issn.1001-1986.2021.03.003
基金项目: 

国家自然科学基金项目 41372094

甘肃省科技重大专项项目 18ZD2GF019

详细信息
    第一作者:

    朱利辉, 1985年生, 男, 河南新乡人, 硕士, 高级工程师, 研究方向为水工环地质、区域地质、矿产地质.E-mail: 419613001@qq.com

  • 中图分类号: X523

Distribution and enrichment of pollutants from underground gasification of bituminous coal in Huating Mining Area

  • 摘要: 煤炭地下气化为我国清洁、低碳、安全、高效现代能源建设开辟新的途径。为研究华亭烟煤地下气化污染物的富集、分布规律,以评估华亭烟煤地下气化的环境影响因素,采用地下气化模拟实验平台系统,通过不同富氧—水气化实验、不同尺度煤样的热解实验,研究煤层气化过程中焦油及气化残留物中重金属元素的富集规律。结果表明:随着烟煤的尺度(块体大小)增加,烟煤热解焦油呈增加趋势,而焦油产率呈先增加后减小的趋势;烟煤在N2、CO2气氛中热解时,热解焦油中主要成分为酚类、萘类以及烃类污染物;气化后残留重金属Ni、Cr、Zn、Cu、As这5种元素在氧化区最为富集、还原区次之、干馏干燥区最不富集,而Hg在氧化区富集程度最高、干馏干燥区次之、还原区最次,Pb在还原区富集程度最高、氧化区次之、干馏干燥区最次;重金属元素残留程度由高到低依次为Zn、As、Hg、Cr、Ni、Cu、Pb。针对华亭矿区,煤层气化后应重点检测重金属元素Zn、As、Hg。在后期实际煤层气化生产阶段,应结合华亭矿区煤层特征及地下水特征,在项目选址、气化工艺等方面进行污染物防控。在当前生态环境保护形势严峻的当下,研究成果对煤炭地下气化开采的污染物处置和减排具有一定的指导意义。

     

  • 图  煤/岩层模拟模型

    Fig. 1  Simulation of coal seams and rock stratum

    图  气化炉解剖及采样位置

    Fig. 2  Anatomy and sampling position diagram of gasifier

    图  热解焦油产量及产率分布

    Fig. 3  Pyrolytic tar yield and yield distribution

    图  不同气氛条件下不同尺度样品热解污染物含量

    Fig. 4  Pollutant content in different scale pyrolysis under different atmosphere

    表  1  华亭矿区烟煤样工业分析与元素分析

    Table  1  Industry and elemental analysis of bituminous coal in Huating Mining Area

    工业分析ω/% 元素分析ω/% Qgr, ad/
    (MJ·kg–1)
    Mad Ad Vd FCd Cdaf Hdaf Ndaf Odaf St, d
    0.86 17.63 31.59 50.86 81.39 4.82 0.79 13 1.1 28.94
    下载: 导出CSV

    表  2  不同富氧气氛条件下煤气中焦油主要成分

    Table  2  Composition of tar in gas during different oxygen-rich atmosphere

    40%富氧 60%富氧 80%富氧 100%富氧
    测定项目 体积分数/% 测定项目 体积分数/% 测定项目 体积分数/% 测定项目 体积分数/%
    3,4-二甲基苯酚 1.11 1-氯-2,3-二氢-1H-茚 1.01 1-甲基萘 5.36 苯酚 35.63
    6.62 3-甲基-酚 2.17 2,6-二甲基萘 1.30 2-甲基苯酚 16.67
    1-甲基萘 8.85 10.66 1,2-二甲基萘 3.81 对甲酚 26.13
    十三烷 0.66 1-甲基萘 8.07 2,3-二甲基萘 2.69 3-甲基苯基酯氨基甲酸甲酯 1.12
    2,6-二甲基萘 1.66 2-甲基萘 4.46 [2-(萘-2-基)乙烯基]-甲基砜 4.98 3-甲基苯酚 0.76
    1,2-二甲基萘 4.07 十三烷 1.26 1,3-二甲基萘, 0.87 2,6-二甲基苯酚 1.60
    联苯 5.65 2,6-二甲基萘 1.13 1.00 3,4-二甲基苯酚 1.47
    1,3-二甲基萘 0.72 1,2-二甲基萘 2.85 二苯并呋喃 1.70 3,4-二甲基苯酚 1.12
    1.20 2,6-二甲基萘 1.96 2,3,6-三甲基萘 1.51 2,3-二甲基苯酚 1.70
    二苯并呋喃 1.71 联苯 6.28 2.95 2,3,5-三甲基苯酚 0.29
    2,3,6-三甲基萘 1.14 0.78 2-甲基-1,1'-联苯 0.83 3-氯丙-2-烯基酯-2,2-二甲基丙酸 0.03
    4.43 二苯并呋喃 1.07 4-甲基-二苯并呋喃 1.00
    2-甲基蒽 1.56 1-甲基蒽 2.72 2-甲基蒽 2.40
    9-甲基蒽 3.08 1a,9b-二氢-1H-环丙并[1]菲 0.94 荧蒽 0.76
    二十烷 0.45 2-甲基蒽 1.60 3.43
    荧蒽 2.95 二十烷 0.98 二十烷 2.85
    2.33 荧蒽 3.20 11H苯并[b]芴 2.18
    11H苯并[b]芴 1.71 2.63 2-甲基芘 1.80
    2,5-二苯基-双环[4.1.0]七-1,3,5-三烯 1.62 11H苯并[b]芴 1.53 1-甲基芘 1.35
    苯并[e]醋菲烯 1.95 2-甲基芘 0.94 二十四烷 1.07
    三十六烷 1.02 5,6-二氢䓛 1.58
    下载: 导出CSV

    表  3  气化样品重金属残留物含量对比

    Table  3  Comparison of heavy metal residues in gasification samples

    类别 元素含量/(μg·g–1)
    Cr Ni Cu Zn Pb As Hg
    原煤 5.76 7.35 25.28 5.09 22.79 8.94 0.20
    氧化区 36.02 22.08 23.16 84.74 11.22 26.15 0.39
    还原区 9.17 6.84 19.77 94.87 20.15 25.55 0.21
    干馏干燥区 8.65 15.23 18.61 80.03 15.74 25.50 0.82
    平均值 17.17 14.53 20.19 86.29 15.75 25.86 0.46
    下载: 导出CSV

    表  4  气化区重金属残留物的富集情况

    Table  4  Enrichment regularity of heavy metal elements in residue of gasification area

    元素 灰渣/(μg·g-1) 焦/(μg·g-1) 半焦/(μg·g-1) 原煤/(μg·g-1) 平均残留率/% 相对富集系数
    半焦
    Cr 36.02 9.17 8.65 5.76 87 6.20 1.06 0.34
    Ni 22.08 6.84 15.23 7.35 77 2.97 0.62 0.46
    Cu 23.16 19.77 18.61 25.28 31 0.91 0.52 0.16
    Zn 84.74 94.87 80.03 5.09 654 16.51 12.44 3.52
    Pb 11.22 20.15 15.74 22.79 27 0.49 0.59 0.15
    As 26.15 25.55 25.50 8.94 114 2.89 1.90 0.64
    Hg 0.39 0.21 0.82 0.20 124 1.93 0.70 0.92
    注:残留率=气化残留率×残留物中该元素含量/煤中该元素含量[20];相对富集系数=(气化产物中元素含量/原煤中该元素含量)×(煤中空气干燥基灰分/残留物中空气干燥基灰分)[21]
    下载: 导出CSV
  • [1] 刘淑琴, 梁杰, 余力, 等. 低碳清洁煤利用技术: 煤炭地下气化技术[C]//2010中国环境科学学会学术年会论文集(第二卷), 2010: 1876-1879.

    LIU Shuqin, LIANG Jie, YU Li, et al. Low-carbon clean coal utilization technology: Coal underground gasification technology[C]//2010 Chinese Society of Environmental Sciences annual proceedings(Volume Ⅱ), 2010: 1876-1879.
    [2] 许加芳. 煤炭地下气化的原理及发展情况[J]. 煤矿现代化, 2014(5): 120-122.. doi: 10.3969/j.issn.1009-0797.2014.05.048

    XU Jiafang. Principle and development of underground coal gasification[J]. Coal Mine Modernization, 2014(5): 120-122.. doi: 10.3969/j.issn.1009-0797.2014.05.048
    [3] 平立华, 孟运平, 潘树仁, 等. 江苏省煤炭资源现状及开发利用建议[J]. 沉积与特提斯地质, 2015, 35(1): 109-112.. doi: 10.3969/j.issn.1009-3850.2015.01.014

    PING Lihua, MENG Yunping, PAN Shuren, et al. Current status and proposals for the exploitation and utilization of the coal resources in Jiangsu[J]. Sedimentary Geology and Tethyan Geology, 2015, 35(1): 109-112.. doi: 10.3969/j.issn.1009-3850.2015.01.014
    [4] 刘淑琴, 张尚军, 牛茂菲, 等. 煤炭地下气化技术及其应用前景[J]. 地学前缘, 2016, 23(3): 97-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201603016.htm

    LIU Shuqin, ZHANG Shangjun, NIU Maofei, et al. Technology process and application prospect of underground coal gasification[J]. Earth Science Frontiers, 2016, 23(3): 97-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201603016.htm
    [5] 张明, 王世鹏. 国内外煤炭地下气化技术现状及新奥攻关进展[J]. 探矿工程(岩土钻掘工程), 2010, 37(10): 14-16.. doi: 10.3969/j.issn.1672-7428.2010.10.003

    ZHANG Ming, WANG Shipeng. Technical situation of underground coal gasification in China and abroad and the study progress of ENN[J]. Exploration Engineering, 2010, 37(10): 14-16.. doi: 10.3969/j.issn.1672-7428.2010.10.003
    [6] 刘永华. 优质稀缺煤的中煤再选试验研究[D]. 徐州: 中国矿业大学, 2012.

    LIU Yonghua. Experimental study on secondary separation of high quality and scarce coal[D]. Xuzhou: China University of Mining and Technology, 2012.
    [7] 韩磊, 秦勇, 王作棠. 煤炭地下气化炉选址的地质影响因素[J]. 煤田地质与勘探, 2019, 47(2): 44-50. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201902008.htm

    HAN Lei, QIN Yong, WANG Zuotang. Geological influencing factors for site selection of underground coal gasifier[J]. Coal Geology & Exploration, 2019, 47(2): 44-50. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201902008.htm
    [8] 卢西欣T M. 煤炭地下气化的地质条件[J]. 赵理中译. 中国煤炭, 1995(7): 67-68.

    LUXIXIN T M. Geological conditions of coal underground gasification[J]. ZHAO Lizhong translate. China Coal, 1995(7): 67-68.
    [9] 谌伦建, 徐冰, 叶云娜, 等. 煤炭地下气化过程中有机污染物的形成[J]. 中国矿业大学学报, 2016, 45(1): 150-156. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201601021.htm

    CHEN Lunjian, XU Bing, YE Yunna, et al. Formation of organic contaminants during underground coal gasification[J]. Journal of China University of Mining & Technology, 2016, 45(1): 150-156. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201601021.htm
    [10] 刘淑琴, 牛茂斐, 齐凯丽, 等. 煤炭地下气化特征污染物迁移行为探测[J]. 煤炭学报, 2018, 43(9): 2618-2624. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201809030.htm

    LIU Shuqin, NIU Maofei, QI Kaili, et al. Migration behavior of typical pollutants from underground coal gasification[J]. Journal of China Coal Society, 2018, 43(9): 2618-2624. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201809030.htm
    [11] 马爱玲, 谌伦建, 徐冰. 煤炭地下气化"三带"残留物的物化特性研究[J]. 煤炭科学技术, 2019, 47(11): 217-223. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201911031.htm

    MA Ailing, CHEN Lunjian, XU Bing. Study on physicochemical properties of "three zone" residues during underground coal gasification[J]. Coal Science and Technology, 2019, 47(11): 217-223. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201911031.htm
    [12] 王志刚, 付小锦, 梁杰, 等. 天津静海含煤区无井式煤炭地下气化选址地质评价模型[J]. 煤田地质与勘探, 2019, 47(3): 41-48. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201903008.htm

    WANG Zhigang, FU Xiaojin, LIANG Jie, et al. Geological evaluation model for site selection of underground coal gasification without well in Jinghai coal-bearing area, Tianjin, China[J]. Coal Geology and Exploration, 2019, 47(3): 41-48. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201903008.htm
    [13] 李玉龙, 梁栋宇, 盛训超, 等. 煤炭地下气化残留物中微量元素分布及富集特性[J]. 化工进展, 2018, 37(4): 1590-1598. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201804042.htm

    LI Yulong, LIANG Dongyu, SHENG Xunchao, et al. Distribution and enrichment characteristics of trace elements during underground coal gasification[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1590-1598. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201804042.htm
    [14] 戢绪国, 步学明, 应幼菊, 等. 五种煤固定床气化小试试验综合研究[J]. 煤炭转化, 2002, 25(3): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-MTZH200203013.htm

    JI Xuguo, BU Xueming, YING Youju, et al. Synthetical studies on small scale of gasification of five coal samples at fixed-bed gasifier[J]. Coal Conversion, 2002, 25(3): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-MTZH200203013.htm
    [15] 黄温钢. 残留煤地下气化综合评价与稳定生产技术研究[D]. 徐州: 中国矿业大学, 2014.

    HUANG Wengang. Study on comprehensive evaluation and stable production technology for underground gasification of residual coal[D]. Xuzhou: China University of Mining and Technology, 2014.
    [16] 张荣光. 常压循环流化床煤气化试验与模型研究[D]. 北京: 中国科学院研究生院, 2005.

    ZHANG Rongguang. Experiment study and modelling on coal gasification in atmosphere circulating fluidized bed[D]. Beijing: Chinese Academy of Sciences, 2005.
    [17] 张芹芹. 淮南矿区环境修复本植物中重金属分布特征研究[D]. 淮南: 安徽理工大学, 2011.

    ZHANG Qinqin. Study on distribution characteristics of heavy metals in woody plants for environmental restoration in Huainan mining area[D]. Huainan: Anhui University of Science & Technology, 2011.
    [18] 曾小强, 陈晓平, 梁财, 等. 温度对污泥流化床焚烧飞灰重金属迁移的影响[J]. 东南大学学报(自然科学版), 2015, 45(1): 97-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201501019.htm

    ZENG Xiaoqiang, CHEN Xiaoping, LIANG Cai, et al. Effect of temperature on migration of heavy metals in fly ash in a fluidized bed incinerator for sewage sludge[J]. Journal of Southeast University(Natural Science Edition), 2015, 45(1): 97-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201501019.htm
    [19] 王兆丰, 孙小明, 陆庭侃, 等. 液态CO2相变致裂强化瓦斯预抽试验研究[J]. 河南理工大学学报(自然科学版), 2015, 34(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB201501001.htm

    WANG Zhaofeng, SUN Xiaoming, LU Tingkan, et al. Experiment research on strengthening gas drainage effect with fracturing technique by liquid CO2phase transition[J]. Journal of Henan Polytechnic University(Natural Science), 2015, 34(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB201501001.htm
    [20] 苗志强, 高丽兵, 郭少青, 等. 煤泥燃烧过程中汞的迁移行为研究[J]. 能源与环保, 2021, 43(3): 122-127.

    MIAO Zhiqiang, GAO Libing, GUO Shaoqing, et al. Study on mercury transfer behavior during coal slime combustion[J]. China Energy and Environmental Protection, 2021, 43(3): 122-127.
    [21] 黄温钢, 王作棠. 煤炭地下气化变权-模糊层次综合评价模型[J]. 西安科技大学学报, 2017, 37(4): 500-507. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201704008.htm

    HUANG Wengang, WANG Zuotang. Comprehensive evaluation model of fuzzy analytic hierarchy process with variable weight for underground coal gasification[J]. Journal of Xi'an University of Science and Technology, 2017, 37(4): 500-507. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201704008.htm
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  322
  • HTML全文浏览量:  46
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-12
  • 修回日期:  2020-12-14
  • 发布日期:  2021-06-25

目录

    /

    返回文章
    返回