“煤矿隐蔽致灾地质因素动态智能探测技术”专题 编者按:
我国煤炭资源赋存地质条件差、隐蔽致灾地质因素多,迫切需要超前精细查明隐蔽地质异常体的分布状况,保障煤炭安全高效开采。当前,煤矿采区地质勘探、地面三维地震勘探、矿井物探在探测精度、深度与可靠性及时效性方面均不能完全满足煤矿生产的需求,亟需开展煤矿隐蔽致灾地质因素地球物理响应机理的研究,研发地面高精度勘探与井下动态智能探测的新技术与新装备,形成煤矿隐蔽致灾地质因素快速、精细、动态、智能探测技术体系。为了配合煤炭行业在隐蔽致灾地质因素探查的战略需求,交流分享我国在煤炭地质及矿井物探方面取得的最新科技成果,邀请中煤科工集团西安研究院有限公司王季研究员担任客座主编,依托国家重点研发计划项目(2018YFC0807800),开展“煤矿隐蔽致灾地质因素动态智能探测技术”专题策划,本期专题优选8篇稿件刊登,以期促进煤矿企业地质灾害防治的技术进步。
Experimental study on advanced real time detection system of seismic-while-excavating
-
摘要: 煤矿智能化建设要求采用智能化地质探测技术在巷道掘进过程中实时完成掘进前方区域的探测和预报。基于在线式矿井地震监测分站构建的随掘地震实时探测系统能够在巷道掘进的同时,采集以掘进机震动为震源的随掘地震数据,通过光纤网络实时传输至地面服务器的数据库内。随掘地震数据处理软件从数据库中获取当前随掘数据,经过筛选、提取虚拟炮集和偏移成像等步骤对掘进前方和侧前方一定区域进行反射槽波成像。为验证系统性能和探测结果的有效性,在正开展掘进作业的山西榆树坡煤矿5106回风巷内安装随掘地震实时探测系统,对该巷道开展为期数个月的随掘跟踪探测试验,探测系统实时采集随掘地震数据并成像,随着掘进长度的增加,每日的探测结果不断显示5106工作面内存在一条隐伏断层,后期的反射槽波探测和钻探工作验证了该断层的存在。试验结果表明,随掘地震实时探测系统能够在掘进过程中不断利用掘进机激发的地震信号对巷道前方和侧前方区域成像,从而在不影响掘进施工的条件下,实现了巷道侧前方地质异常体的连续跟踪探测和实时监测,达到了智能掘进系统对地质探测能力的要求。Abstract: The construction of intelligent loal mine requires the employment of the intelligent geological exploration technology to detect and predict front area in the process of roadway tunneling. The real time detection system of seismic while excavating is constructed on the basis of on-line seismic monitoring stations. The acquired seismic data is inspired by vibration of the tunneling machine, and is transmitted on optical fiber network to the database server located on the ground. The processing software acquires current seismic data from the database, through the steps of screening, pulsing and migration, imaging the front and side area of roadway head by reflected in-seam wave. In order to verify the performance and effectiveness of this system, we installed the real time detection system in the 5106 air return roadway of the Yushupo Coal Mine, and took a tracking detection test for several months. The detection system collected real-time seismic data, imaging in real time while excavating. With the increasing of the tunneling length, daily detection results show that there is a hidden fault existing in working face 5106. The fault has been verified by later drilling and detection of reflected in-seam wave. That means this real time detection system has the ability to image the area in front and side of the roadway by seismic signal generated from the road-header. Therefore, the detection system realized the continuous tracking and real time monitoring of abnormal structures in front of roadway side without affecting the process of roadway tunneling. It meets the requirement of geological detection ability for an intelligent tunneling system.
-
-
[1] 山西省市场监督管理局. 智能煤矿建设规范: DB14/T 2060-2020[S]. 2020-06-30.Shanxi Provincial Market Supervision Administration. Smart coal mine construction specification: DB14/T 2060-2020[S]. 2020-06-30. [2] 山西省能源局. 山西省能源局关于印发《全省煤矿智能化建设评定办法(试行)》和《全省煤矿智能化建设基本要求及评分方法(试行)》的通知(晋能源煤技发[2020]596号)[EB/OL]. [2020-12-08]. http://nyj.shanxi.gov.cn/u/cms/www/file/20201217/1608188141799016735Shanxi Provincial Energy Administration. Notice of Shanxi energy administration on issuing the "measures for the evaluation of intelligent construction of coal mines in the province(for trial implementation)" and "basic requirements and evaluation methods for intelligent construction of coal mines in the Province(for Trial Implementation)" (Jin Energy Coal Technology Development[2020]No. 596)[EB/OL]. [2020-12-08]. http://nyj.shanxi.gov.cn/u/cms/www/file/20201217/1608188141799016735 [3] 程久龙, 李飞, 彭苏萍, 等. 矿井巷道地球物理方法超前探测研究进展与展望[J]. 煤炭学报, 2014, 39(8): 1742-1750. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408048.htmCHENG Jiulong, LI Fei, PENG Suping, et al. Research progress and development direction on advanced detection in mine roadway working face using geophysical methods[J]. Journal of China Coal Society, 2014, 39(8): 1742-1750. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408048.htm [4] 韩德品, 石学锋, 石显新, 等. 煤矿老窑积水巷道直流电法超前探测异常特征研究[J]. 煤炭科学技术, 2019, 47(4): 157-161. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201904026.htmHAN Depin, SHI Xuefeng, SHI Xianxin, et al. Study on anomaly characteristics of in-advance DC electric detection of water accumulated roadway in abandoned coal mines[J]. Coal Science and Technology, 2019, 47(4): 157-161. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201904026.htm [5] 张平松, 胡雄武. 矿井巷道掘进电磁法超前探测技术研究现状[J]. 煤炭科学技术, 2015, 43(1): 112-115. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201501030.htmZHANG Pingsong, HU Xiongwu. Research status on technology of advanced detection by electromagnetic methods in mine laneway[J]. Coal Science and Technology, 2015, 43(1): 112-115. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201501030.htm [6] 刘盛东, 余森林, 王勃, 等. 矿井巷道地震反射波超前探测波场处理方法研究[J]. 煤炭科学技术, 2015, 43(1): 100-103. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201501027.htmLIU Shengdong, YU Senlin, WANG Bo, et al. Study on processing method of seismic reflection wave field for advanced detection of mine gateway[J]. Coal Science and Technology, 2015, 43(1): 100-103. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201501027.htm [7] 张平松, 刘盛东, 吴健生. 坑道掘进空间反射波超前探测技术[J]. 煤炭学报, 2010, 35(8): 1331-1335. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201008022.htmZHANG Pingsong, LIU Shengdong, WU Jiansheng. Tunnel reflection wave imaging technology and its system during driving space[J]. Journal of China Coal Society, 2010, 35(8): 1331-1335. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201008022.htm [8] 王季. 反射槽波探测采空巷道的实验与方法[J]. 煤炭学报, 2015, 40(8): 1879-1885. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201508025.htmWANG Ji. Experiment and method of void roadway detection using reflected in-seam wave[J]. Journal of China Coal Society, 2015, 40(8): 1879-1885. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201508025.htm [9] 杨辉. 反射槽波在阳煤和顺矿区小构造探查中的应用[J]. 煤田地质与勘探, 2018, 46(增刊1): 37-40. doi: 10.3969/j.issn.1001-1986.2018.S1.008YANG Hui. Application of reflected in-seam waves in detecting small structure in Heshun mining area of Yangquan Coal Group[J]. Coal Geology & Exploration, 2018, 46(Sup. 1): 37-40. doi: 10.3969/j.issn.1001-1986.2018.S1.008 [10] 王一. 矿井反射槽波包络叠加成像方法及其应用[J]. 煤田地质与勘探, 2017, 45(5): 152-154. doi: 10.3969/j.issn.1001-1986.2017.05.026WANG Yi. Method and application of reflected in-seam wave enveloped superposition imaging in coal mine[J]. Coal Geology & Exploration, 2017, 45(5): 152-154. doi: 10.3969/j.issn.1001-1986.2017.05.026 [11] 覃思. 随采地震井-地联合超前探测的试验研究[J]. 煤田地质与勘探, 2016, 44(6): 148-151.. doi: 10.3969/j.issn.1001-1986.2016.06.027QIN Si. Underground-surface combined seismic while mining advance detection[J]. Coal Geology & Exploration, 2016, 44(6): 148-151.. doi: 10.3969/j.issn.1001-1986.2016.06.027 [12] 程建远, 覃思, 陆斌, 等. 煤矿井下随采地震探测技术发展综述[J]. 煤田地质与勘探, 2019, 47(3): 1-9. doi: 10.3969/j.issn.1001-1986.2019.03.001CHENG Jianyuan, QIN Si, LU Bin, et al. The development of seismic-while-mining detection technology in underground coal mines[J]. Coal Geology & Exploration, 2019, 47(3): 1-9. doi: 10.3969/j.issn.1001-1986.2019.03.001 [13] 覃思, 程建远. 煤矿井下随采地震反射波勘探试验研究[J]. 煤炭科学技术, 2015, 43(1): 116-119. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201501031.htmQIN Si, CHENG Jianyuan. Experimental study on seismic while mining for underground coal mine reflection survey[J]. Coal Science and Technology, 2015, 43(1): 116-119. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201501031.htm [14] 王季, 覃思, 陆斌, 等. 基于掘进机随掘震源的巷道侧前方断层成像技术[J]. 煤炭科学技术, 2021, 49(2): 232-237. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202102027.htmWANG Ji, QIN Si, LU Bin, et al. Tomographic imaging technology of front side of roadway based on excavation source of roadheader[J]. Coal Science and Technology, 2021, 49(2): 232-237. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202102027.htm [15] 吴海. 矿用本安型微震监测分站技术要求及检验方法研究[J]. 煤炭技术, 2017, 36(12): 211-212. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201712081.htmWU Hai. Study on technical requirement and test method of mine intrinsically safe microseismic monitoring substation[J]. Coal Technology, 2017, 36(12): 211-212. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201712081.htm [16] 覃思, 崔伟雄, 王伟. 随采地震数据质量定量评价[J]. 煤田地质与勘探, 2019, 47(3): 20-24. doi: 10.3969/j.issn.1001-1986.2019.03.004QIN Si, CUI Weixiong, WANG Wei. Quantitative quality evaluation of seismic-while-mining data[J]. Coal Geology & Exploration, 2019, 47(3): 20-24. doi: 10.3969/j.issn.1001-1986.2019.03.004 [17] 陆斌, 程建远, 胡继武, 等. 采煤机震源有效信号提取及初步应用[J]. 煤炭学报, 2013, 38(12): 2202-2207. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201312021.htmLU Bin, CHENG Jianyuan, HU Jiwu, et al. Shearer source signal extraction and preliminary application[J]. Journal of China Coal Society, 2013, 38(12): 2202-2207. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201312021.htm [18] 陆斌. 基于地震干涉的回采工作面随采地震成像方法[J]. 煤田地质与勘探, 2016, 44(6): 142-147.. doi: 10.3969/j.issn.1001-1986.2016.06.026LU Bin. A seismic while mining method of coal working-face based on seismic interferometry[J]. Coal Geology & Exploration, 2016, 44(6): 142-147.. doi: 10.3969/j.issn.1001-1986.2016.06.026 [19] 刘强. L1范数约束的随掘地震噪声衰减[J/OL]. 煤炭学报, 2020-12-07. http://kns.cnki.net/kcms/detail/11.2190.td.20200918.1124.002.htmlLIU Qiang. Noise attenuation based on L1-norm constraint inversion in seismic while drilling[J/OL]. Journal of China Coal Society, 2020-12-07. http://kns.cnki.net/kcms/detail/11.2190.td.20200918.1124.002.html [20] 姬广忠. 反射槽波绕射偏移成像及应用[J]. 煤田地质与勘探, 2017, 45(1): 121-124. doi: 10.3969/j.issn.1001-1986.2017.01.024JI Guangzhong. Diffraction migration imaging of reflected in-seam waves and its application[J]. Coal Geology & Exploration, 2017, 45(1): 121-124. doi: 10.3969/j.issn.1001-1986.2017.01.024 -