留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

井下瞬变电磁仪硬件对致灾水体分辨能力的评估

赵钟南 许洋铖 吴燕清 谭青青 康跃明 王耀

赵钟南, 许洋铖, 吴燕清, 谭青青, 康跃明, 王耀. 井下瞬变电磁仪硬件对致灾水体分辨能力的评估[J]. 煤田地质与勘探, 2021, 49(4): 40-48. doi: 10.3969/j.issn.1001-1986.2021.04.006
引用本文: 赵钟南, 许洋铖, 吴燕清, 谭青青, 康跃明, 王耀. 井下瞬变电磁仪硬件对致灾水体分辨能力的评估[J]. 煤田地质与勘探, 2021, 49(4): 40-48. doi: 10.3969/j.issn.1001-1986.2021.04.006
ZHAO Zhongnan, XU Yangcheng, WU Yanqing, TAN Qingqing, KANG Yueming, WANG Yao. Evaluation on the resolution ability of underground transient electromagnetic instrument to disaster-causing water bodies[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 40-48. doi: 10.3969/j.issn.1001-1986.2021.04.006
Citation: ZHAO Zhongnan, XU Yangcheng, WU Yanqing, TAN Qingqing, KANG Yueming, WANG Yao. Evaluation on the resolution ability of underground transient electromagnetic instrument to disaster-causing water bodies[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 40-48. doi: 10.3969/j.issn.1001-1986.2021.04.006

井下瞬变电磁仪硬件对致灾水体分辨能力的评估

doi: 10.3969/j.issn.1001-1986.2021.04.006
基金项目: 

国家重点研发计划课题 2018YFC0807805

煤矿灾害动力学与控制国家重点实验室自主研究项目 2011DA105287-MS201906

详细信息
    第一作者:

    赵钟南,1997年生,男,浙江湖州人,硕士研究生,研究方向为井下瞬变电磁数值建模. E-mail:ahjzuzzn@163.com

    通信作者:

    许洋铖,1983年生,男,重庆南川人,博士,副研究员,研究方向为瞬变电磁探测技术及仪器. E-mail:xyc1983@cqu.edu.cn

  • 中图分类号: P631

Evaluation on the resolution ability of underground transient electromagnetic instrument to disaster-causing water bodies

  • 摘要: 井下瞬变电磁随掘探测技术是探测掘进面前方致灾水体的有效方法,从硬件方面评估仪器对致灾水体的分辨能力,是仪器能够在井下正确使用的重要手段。通过比较二次场绝对差和仪器分辨率、叠加后背景噪声之间的大小关系,分析含水致灾体识别的硬件条件和评估依据;提出从硬件方面评估井下瞬变电磁对致灾水体分辨能力的计算方法:根据致灾水体结构建立三维地质模型,推导梯形波关断与负阶跃波关断二次场感应电压的关系,在GPU上采用全空间三维有限差分并行算法计算了致灾水体二次场响应;测量某瞬变电磁仪的关断时间和综合噪声,根据致灾水体的硬件分辨依据,从硬件方面评估井下瞬变电磁仪对导水陷落柱、充水采空区的分辨能力。为井下瞬变电磁探测仪器的研制和现场准确探测提供技术参考,具有重大的研究意义。

     

  • 图  收发线圈工作

    Fig. 1  Schematic diagram of transmitting and receiving coils

    图  从硬件方面评估井下瞬变电磁仪对致灾水体的分辨能力计算流程

    Fig. 2  The calculation flowchart for evaluating the resolution ability of the downhole transient electromagnetic instrument to the disaster-causing water body from the hardware aspect

    图  梯形波发射电流

    Fig. 3  Trapezoidal wave emission current

    图  网格剖分示意图及Yee晶胞格式

    Fig. 4  Schematic diagram of meshing using Yee grid and Yee cell format

    图  NVIDA Tesla T4显卡和GPU运行状态

    Fig. 5  NVIDIA Tesla T4 graphics card and GPU operating state diagram

    图  某瞬变电磁仪关断时间测试

    Fig. 6  Turn-off time test of a transient electromagnetic instrument

    图  某瞬变电磁仪综合噪声测试

    Fig. 7  Comprehensive noise of a transient electromagnetic instrument

    图  陷落柱模型

    Fig. 8  Schematic diagram of collapse column model

    图  不同距离下充水陷落柱与线圈感应电压衰减曲线

    Fig. 9  Attenuation curves of induced voltage at different distances between water-filled column and coil

    图  10  充水陷落柱与线圈不同距离下二次场绝对差

    Fig. 10  The absolute difference of the secondary field at different distances between the water-filled collapse column and the coil

    图  11  采空区模型

    Fig. 11  Schematic diagram of goaf model

    图  12  不同距离下充水采空区与线圈感应电压衰减曲线

    Fig. 12  Attenuation curves of induced voltage at different distances between water-filled goaf and coil

    图  13  不同距离下充水采空区与线圈二次场绝对差

    Fig. 13  The absolute difference of the secondary field at different distances between the water-filled goaf and the coil

    表  1  模型参数

    Table  1  Model parameters

    地层岩性 长×宽×高/(m×m×m) 电阻率/(Ω·m)
    砂岩 5 385×5 385×2 690 400
    5 385×5 385×6 500
    砂岩 5 385×5 385×100 400
    灰岩 5 385×5 385×2 590 700
    下载: 导出CSV

    表  2  仪器参数

    Table  2  Instrument parameters

    计算参数类别 指标
    装置形式 中心回线
    发射电流/A 2.8
    关断时间/μs 12
    每匝发射回线面积/m2 4
    发射回线匝数 10
    磁探头有效面积/m2 4 800
    综合噪声/μV 10
    下载: 导出CSV
  • [1] 范立民, 孙魁, 李成, 等. 榆神矿区煤矿防治水的几点思考[J]. 煤田地质与勘探, 2021, 49(1): 182-188.. doi: 10.3969/j.issn.1001-1986.2021.01.019

    FAN Limin, SUN Kui, LI Cheng, et al. Thoughts on mine water control and treatment in Yushen mining area[J]. Coal Geology & Exploration, 2021, 49(1): 182-188.. doi: 10.3969/j.issn.1001-1986.2021.01.019
    [2] FANG Huiming. Hydrochemical characteristics and water hazard control of Tangjiahui Coal Mine, Ordos Basin, NW China[C]// Hubei Zhongke Institute of Geology and Environment Technology, China. Proceedings of the 8th Academic Conference of Geology Resource Management and Sustainable Development. 2020: 6.
    [3] 虎维岳, 赵春虎. 基于充水要素的矿井水害类型三线图划分方法[J]. 煤田地质与勘探, 2019, 47(5): 1-8.. doi: 10.3969/j.issn.1001-1986.2019.05.001

    HU Weiyue, ZHAO Chunhu. Trilinear chart classification method of mine water hazard type based on factors of water recharge[J]. Coal Geology & Exploration, 2019, 47(5): 1-8.. doi: 10.3969/j.issn.1001-1986.2019.05.001
    [4] 李超峰. 煤层顶板含水层涌水危险性评价方法[J]. 煤炭学报, 2020, 45(增刊1): 384-392. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2020S1042.htm

    LI Chaofeng. Method for evaluating the possibility of water inrush from coal seam roof aquifer[J]. Journal of China Coal Society, 2020, 45(Sup. 1): 384-392. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2020S1042.htm
    [5] XU Zhimin, SUN Yajun, GAO Shang, et al. Comprehensive exploration, safety evaluation and grouting of karst collapse columns in the Yangjian coalmine of the Shanxi Province, China[J]. Carbonates and Evaporites, 2021, 36(1): 16.. doi: 10.1007/s13146-021-00675-z
    [6] 李洋, 王金平, 魏启明. 瞬变电磁法在井下工作面顶板导水裂缝探测中的应用[J]. 煤田地质与勘探, 2018, 46(增刊1): 66-71. doi: 10.3969/j.issn.1001-1986.2018.S1.014

    LI Yang, WANG Jinping, WEI Qiming. Application of transient electromagnetic method for detecting water-conducting crack in the roof of underground working face[J]. Coal Geology & Exploration, 2018, 46(Sup. 1): 66-71. doi: 10.3969/j.issn.1001-1986.2018.S1.014
    [7] 胡雄武, 徐虎, 彭苏萍, 等. 煤层采动覆岩富水性变化规律瞬变电磁法动态监测研究[J/OL]. 煤炭学报, [2021-04-11]. https://doi.org/10.13225/j.cnki.jccs.ST21.8220

    HU Xiongwu, XU Hu, PENG Suping, et al. Study on dynamic monitoring of water abundance of overlying strata in coal seam by transient electromagnetic method[J/OL]. Journal of China Coal Society, [2021-04-11]. https://doi.org/10.13225/j.cnki.jccs.ST21.8220
    [8] WANG Peng, LI Mingxing, YAO Weihua, et al. Detection of abandoned water-filled mine tunnels using the downhole transient electromagnetic method[J]. Exploration Geophysics, 2020, 51(3): 1-16. doi: 10.1080/08123985.2020.1746182
    [9] 雷康信, 薛国强, 陈卫营, 等. 瞬变电磁法探测薄层的分辨能力与偏移距关系[J]. 地球科学与环境学报, 2020, 42(6): 731-736. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202006004.htm

    LEI Kangxin, XUE Guoqiang, CHEN Weiying, et al. Relationship between the detection capability and offset of transient electromagnetic method for thin layers[J]. Journal of Earth Sciences and Environment, 2020, 42(6): 731-736. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202006004.htm
    [10] 陈卫营, 薛国强. 电性源瞬变电磁对薄层的探测能力[J]. 物探与化探, 2015, 39(4): 775-779. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201504019.htm

    CHEN Weiying, XUE Guoqiang. Detection capability of grounded electric source TEM for thin layer[J]. Geophysical and Geochemical Exploration, 2015, 39(4): 775-779. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201504019.htm
    [11] 武军杰, 杨毅, 张杰, 等. TEM对于深部低阻层的分辨能力模拟分析[J]. 物探化探计算技术, 2014, 36(5): 547-554.. doi: 10.3969/j.issn.1001-1749.2014.05.06

    WU Junjie, YANG Yi, ZHANG Jie, et al. Resolution capability preliminary analysis of deep conductive layer with TEM method[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2014, 36(5): 547-554.. doi: 10.3969/j.issn.1001-1749.2014.05.06
    [12] CHANG Jianghao, SU Benyu, MALEKIAN R, et al. Detection of water-filled mining goaf using mining transient electromagnetic method[J]. IEEE Transactions on Industrial Informatics, 2019, 16(5): 1. http://ieeexplore.ieee.org/document/8654002
    [13] CHANG Jianghao, XUE Guoqiang, MALEKIAN R. A comparison of surface-to-coal mine roadway TEM and surface TEM responses to water-enriched bodies[J]. IEEE Access, 2019, 7: 167320-167328.. doi: 10.1109/ACCESS.2019.2953844
    [14] 嵇艳鞠, 栾卉, 李肃义, 等. 全波形时间域航空电磁探测分辨率[J]. 吉林大学学报(地球科学版), 2011, 41(3): 885-891. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201103039.htm

    JI Yanju, LUAN Hui, LI Suyi, et al. Resolution of full waveform airborne TEM[J]. Journal of Jilin University(Earth Science Edition), 2011, 41(3): 885-891. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201103039.htm
    [15] 薛国强, 李海, 陈卫营, 等. 煤矿含水体瞬变电磁探测技术研究进展[J]. 煤炭学报, 2021, 46(1): 77-85. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202101008.htm

    XUE Guoqiang, LI Hai, CHEN Weiying, et al. Progress of transient electromagnetic detection technology for water-bearing bodies in coal mines[J]. Journal of China Coal Society, 2021, 46(1): 77-85. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202101008.htm
    [16] 王新苗, 韩保山, 宋焘, 等. 智能开采工作面三维地质模型构建及误差分析[J]. 煤田地质与勘探, 2021, 49(2): 93-101.. doi: 10.3969/j.issn.1001-1986.2021.02.012

    WANG Xinmiao, HAN Baoshan, SONG Tao, et al. 3D geological model construction and error analysis of intelligent mining working face[J]. Coal Geology & Exploration, 2021, 49(2): 93-101.. doi: 10.3969/j.issn.1001-1986.2021.02.012
    [17] 孙怀凤, 程铭, 吴启龙, 等. 瞬变电磁三维FDTD正演多分辨网格方法[J]. 地球物理学报, 2018, 61(12): 5096-5104.. doi: 10.6038/cjg2018L0659

    SUN Huaifeng, CHENG Ming, WU Qilong, et al. A multi-scale grid scheme in three-dimensional transient electromagnetic modeling using FDTD[J]. Chinese Journal of Geophysics, 2018, 61(12): 5096-5104.. doi: 10.6038/cjg2018L0659
    [18] CHENG Jiulong, XUE Junjie, ZHOU Jin, et al. 2.5-D inversion of advanced detection transient electromagnetic method in full space[J]. IEEE Access, 2019, 8: 1. http://ieeexplore.ieee.org/document/8945357
    [19] 杨海燕, 岳建华, 李锋平. 斜阶跃电流激励下多匝小回线瞬变电磁场延时特征[J]. 地球物理学报, 2019, 62(9): 3615-3628. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201909031.htm

    YANG Haiyan, YUE Jianhua, LI Fengping. The decay characteristics of transient electromagnetic fields stimulated by ramp step current in multi-turn small coil[J]. Chinese Journal of Geophysics, 2019, 62(9): 3615-3628. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201909031.htm
    [20] 米萨克·N·纳比吉安. 勘查地球物理电磁法[M]. 北京: 地质出版社, 1992.

    NABIJIAN M N. Exploration geophysical electromagnetic method[M]. Beijing: Geological Publishing House, 1992.
    [21] 葛德彪, 闫玉波. 电磁波时域有限差分方法[M]. 西安: 西安电子科技大学出版社, 2002.

    GE Debiao, YAN Yubo. Finite difference time domain method for electromagnetic waves[M]. Xi'an: Xidian University Press, 2002.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  584
  • HTML全文浏览量:  22
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-15
  • 修回日期:  2021-06-21
  • 发布日期:  2021-08-25
  • 网络出版日期:  2021-09-10

目录

    /

    返回文章
    返回