祝艳波, 李红飞, 巨之通, 兰恒星, 刘振谦, 韩宇涛. 黄土抗剪强度与耐崩解性能综合改良试验研究[J]. 煤田地质与勘探, 2021, 49(4): 221-233. DOI: 10.3969/j.issn.1001-1986.2021.04.027
引用本文: 祝艳波, 李红飞, 巨之通, 兰恒星, 刘振谦, 韩宇涛. 黄土抗剪强度与耐崩解性能综合改良试验研究[J]. 煤田地质与勘探, 2021, 49(4): 221-233. DOI: 10.3969/j.issn.1001-1986.2021.04.027
ZHU Yanbo, LI Hongfei, JU Zhitong, LAN Hengxing, LIU Zhenqian, HAN Yutao. Improvement of shear strength and anti-disintegration performance of compacted loess[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 221-233. DOI: 10.3969/j.issn.1001-1986.2021.04.027
Citation: ZHU Yanbo, LI Hongfei, JU Zhitong, LAN Hengxing, LIU Zhenqian, HAN Yutao. Improvement of shear strength and anti-disintegration performance of compacted loess[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 221-233. DOI: 10.3969/j.issn.1001-1986.2021.04.027

黄土抗剪强度与耐崩解性能综合改良试验研究

Improvement of shear strength and anti-disintegration performance of compacted loess

  • 摘要: 为提高黄土高原治沟造地区挖填体力学特性与水稳定性,开展石灰、纳米二氧化硅、聚丙烯纤维和瓜尔豆胶改良黄土强度和崩解试验研究,对比分析其综合改良效果。结果表明:单一材料改良黄土性能仅在某一方面效果提升明显,如石灰和纳米二氧化硅显著提高黄土抗剪强度,提升幅度分别为36.3%~250.6% 与9.0%~99.7%;但在提升黄土耐崩解性能方面改良效果有限;2种材料仅延缓了黄土崩解时间,对最终崩解量无影响。聚丙烯纤维和瓜尔豆胶显著提升黄土的耐崩解性,如瓜尔豆胶可将黄土的崩解率降低至11.5%以下,而聚丙烯纤维改良黄土较素黄土的崩解率降低幅度为11.2%~51.9%;但2种改良材料提升黄土强度性能效果不佳,强度提高幅度仅为1.5%~22.9%和2.8%~15.6%。石灰混合聚丙烯纤维、纳米二氧化硅混合聚丙烯纤维2类复合改良材料既提高黄土耐崩解性、又能提高黄土抗剪强度,克服了单一改良材料对黄土强度与耐崩解性综合性能提高有限的短板,达到黄土综合性能提高的改良目的;其中9%石灰混合0.6%聚丙烯纤维、2%纳米二氧化硅混合0.6%聚丙烯纤维2种复合材料掺比改良效果最优,使改良黄土抗剪强度最高分别提高了109.8%和68.3%、崩解率分别降低了61.3%和49.8%。

     

    Abstract: In order to improve the mechanical properties and water stability of loess in land reclamation of gully-hill areas on the Loess Plateau, an experimental study on the strength and disintegration of loess improved by lime, Nano-SiO2, polypropylene fiber and guar gum were carried out to compare and analyze their comprehensive improvement effect. The results show that the improvement effect of a single material is obvious in a certain aspect. For example, lime and Nano-SiO2 can significantly improve the shear strength of loess by 36.3%-250.6% and 9.0%-99.7% respectively. However, their improvement effect is limited in disintegration resistance of loess. The two materials only delay the disintegration process of the sample, and have no effect on the disintegration amount. Polypropylene fiber and guar gum can significantly improve the disintegration resistance of loess. For example, guar gum can reduce the final disintegration rate of loess to less than 11.5%, and the final disintegration rate of polypropylene fiber improved soil is 11.2%-51.9% lower than that of unmodified soil. But the two materials are not effective in improving the loess strength, with the increase in strength ranging from 1.5%-22.9% and 2.8%-15.6% respectively. The composite improved materials can overcome the shortcomings of a single material in the improvement of the strength and disintegration resistance of the loess, improving the comprehensive performance of loess. The results show that 9% lime mixed with 0.6% polypropylene fiber and 2% Nano-SiO2 mixed with 0.6% polypropylene fiber have the best improvement effect, increasing the shear strength of modified loess by 109.8% and 68.3% respectively and reducing its disintegration rate by 61.3% and 49.8% respectively.

     

/

返回文章
返回