留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矿井水深层回灌过程量质耦合模拟分析

赵春虎 杨建 王世东 周建军 许峰 刘基

赵春虎, 杨建, 王世东, 周建军, 许峰, 刘基. 矿井水深层回灌过程量质耦合模拟分析[J]. 煤田地质与勘探, 2021, 49(5): 36-44. doi: 10.3969/j.issn.1001-1986.2021.05.004
引用本文: 赵春虎, 杨建, 王世东, 周建军, 许峰, 刘基. 矿井水深层回灌过程量质耦合模拟分析[J]. 煤田地质与勘探, 2021, 49(5): 36-44. doi: 10.3969/j.issn.1001-1986.2021.05.004
ZHAO Chunhu, YANG Jian, WANG Shidong, ZHOU Jianjun, XU Feng, LIU Ji. Coupling simulation of groundwater dynamics and solute transfer in the process of deep reinjection of mine water[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 36-44. doi: 10.3969/j.issn.1001-1986.2021.05.004
Citation: ZHAO Chunhu, YANG Jian, WANG Shidong, ZHOU Jianjun, XU Feng, LIU Ji. Coupling simulation of groundwater dynamics and solute transfer in the process of deep reinjection of mine water[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 36-44. doi: 10.3969/j.issn.1001-1986.2021.05.004

矿井水深层回灌过程量质耦合模拟分析

doi: 10.3969/j.issn.1001-1986.2021.05.004
基金项目: 

陕西省自然科学基础研究计划项目 2020JM-715

天地科技股份有限公司科技创新基金项目 2018-TD-MS069

天地科技股份有限公司科技创新基金项目 2018-TD-QN052

详细信息
    第一作者:

    赵春虎,1981年生,男,陕西扶风人,博士,研究员,从事矿山水害防治与矿区水环境保护研究. E-mail: zhaochunhu@cctegxian.com

  • 中图分类号: TD32

Coupling simulation of groundwater dynamics and solute transfer in the process of deep reinjection of mine water

  • 摘要: 矿井水深井回灌是矿井水“转移存储”处理的主要形式,根据鄂尔多斯盆地煤矿区地质和矿井水特征,从回灌目的层地下水与矿井水的匹配性、上下岩层的隔水性、回灌层的渗透性以及封闭性角度提出了矿井水回灌目的层选取依据。并以地下水达西定律和Dupuit理论为基础,建立极坐标系完整注水井稳定流数学模型,得出在稳定注水条件下,回灌量与注水层渗透系数、厚度、回灌压力、水位埋深以及回灌井直径正相关,与影响半径负相关,与回灌层埋深无关。提出了矿井水深层回灌水动力和溶质运移耦合仿真模型构建方法,并以矿井水回灌试验案例为分析对象,模拟得出矿井水回灌过程中含水层水压形成以注水井为中心的“高位水丘”,且注水压力越大,回灌量增加较为明显,模型分析结果与现场试验结果基本一致。溶质运移范围形成以注水井为中心的“圆柱状”弥散形态,特征离子浓度沿回灌井两侧变化剧烈,回灌层特征离子浓度被迅速稀释,随着时间的延伸,弥散稀释范围增加相对较小,说明矿井水回灌对深部高浓度含水层地下水水化学影响程度不大,研究成果可为西部煤矿区矿井水高效回灌处理提供科学依据。

     

  • 图  矿井水深层回灌

    Fig. 1  Schematic diagram of deep recharge of mine water

    图  矿井水深层回灌数值模型

    Fig. 2  Numerical model of deep recharge of mine water

    图  矿井水深层回灌过程中地下水动力演化

    Fig. 3  Simulation map of groundwater dynamic evolution in the process of deep groundwater recharge

    图  不同回灌压力下回灌层稳定水压力分布

    Fig. 4  Distribution of stable water pressure in reinjection layer under different reinjection pressures

    图  不同回灌压力下回灌水量随时间变化

    Fig. 5  Variation of reinjection amount with time under different reinjection pressures

    图  矿井水回灌过程中特征离子(Cl-)运移范围

    Fig. 6  Migration range of characteristic ions(Cl-) in the process of mine water recharge

    图  不同回灌压力下特征离子(Cl-)运移范围

    Fig. 7  Migration range of characteristic ions(Cl-) under different reinjection pressures

    表  1  模型主要参数

    Table  1  Main parameters of the numerical model

    参数 数值
    注水井直径/mm 216
    注水井深度/m 496
    回灌层初始水位埋深/m 200
    回灌层渗透系数K/(m·d-1) 0.011 3
    回灌层弹性给水度S/d-1 5×10-8
    回灌层横向弥散度αL/m 0.5[27]
    回灌层纵向弥散度αT/m 5[27]
    矿井水Cl-质量浓度/(mg·L-1) 70
    回灌层Cl-初始质量浓度C0/(mg·L-1) 40 000
    井口回灌压力p/MPa 6、7、8
    下载: 导出CSV

    表  2  案例矿井回灌实际试验成果和回灌层渗透系数

    Table  2  Results of reinjection test and calculation of permeability coefficient in case mine

    井口压力/MPa 稳定注水量/(m3·h-1) 反演渗透系数/(m·d-1)
    7.0~8.5 98.0 0.011 07
    6.2 68.2 0.013 44
    6.7 71.8 0.015 18
    下载: 导出CSV
  • [1] 范立民, 马雄德, 冀瑞君. 西部生态脆弱矿区保水采煤研究与实践进展[J]. 煤炭学报, 2015, 40(8): 1711-1717. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201508001.htm

    FAN Limin, MA Xiongde, JI Ruijun. Progress in engineering practice of water-preserved coal mining in western eco-environment frangible area[J]. Journal of China Coal Society, 2015, 40(8): 1711-1717. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201508001.htm
    [2] 武强, 赵苏启, 孙文洁, 等. 中国煤矿水文地质类型划分与特征分析[J]. 煤炭学报, 2013, 38(6): 901-905. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201306003.htm

    WU Qiang, ZHAO Suqi, SUN Wenjie, et al. Classification of the hydrogeological type of coal mine and analysis of its characteristics in China[J]. Journal of China Coal Society, 2013, 38(6): 901-905. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201306003.htm
    [3] 孙亚军, 陈歌, 徐智敏, 等. 我国煤矿区水环境现状及矿井水处理利用研究进展[J]. 煤炭学报, 2020, 45(1): 304-316. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001031.htm

    SUN Yajun, CHEN Ge, XU Zhimin, et al. Research progress of water environment, treatment and utilization in coal mining areas of China[J]. Journal of China Coal Society, 2020, 45(1): 304-316. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001031.htm
    [4] 郝春明, 张伟, 何瑞敏, 等. 神东矿区高氟矿井水分布特征及形成机制[J]. 煤炭学报. https://kns.cnki.net/kcms/detail/11.2190.td.20210317.1110.003.html

    HAO Chunming, ZHANG Wei, HE Ruimin, et al. Formation mechanisms for elevated fluoride in the mine water in Shendong coal-mining district[J]. Journal of China Coal Society. https://kns.cnki.net/kcms/detail/11.2190.td.20210317.1110.003.html
    [5] 张杰, 侯忠杰. 榆树湾浅埋煤层保水开采三带发展规律研究[J]. 湖南科技大学学报(自然科学版), 2006, 21(4): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-XTKY200604002.htm

    ZHANG Jie, HOU Zhongjie. Research on the development law of three zones of water-conserving mining in shallow coal seam of Yushuwan[J]. Journal of Hunan University of Science and Technology(Natural Science Edition), 2006, 21(4): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-XTKY200604002.htm
    [6] MA Liqiang, JIN Zhiyuan, LIANG Jimeng, et al. Simulation of water resource loss in short-distance coal seams disturbed by repeated mining[J]. Environmental Earth Sciences, 2015, 74(7): 5653-5662.. doi: 10.1007/s12665-015-4581-6
    [7] 彭小沾, 崔希民, 李春意, 等. 陕北浅煤层房柱式保水开采设计与实践[J]. 采矿与安全工程学报, 2008, 25(3): 301-304.. doi: 10.3969/j.issn.1673-3363.2008.03.011

    PENG Xiaozhan, CUI Ximin, LI Chunyi, et al. Design and practice of room & pillar water-preserved mining for shallowly buried coal seam in north of Shaanxi Province[J]. Journal of Mining & Safety Engineering, 2008, 25(3): 301 -304.. doi: 10.3969/j.issn.1673-3363.2008.03.011
    [8] 黄庆享, 张文忠. 浅埋煤层条带充填隔水岩组力学模型分析[J]. 煤炭学报, 2015, 40(5): 973-978. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201505002.htm

    HUANG Qingxiang, ZHANG Wenzhong. Mechanical model of water resisting strata group in shallow seam strip-filling mining[J]. Journal of China Coal Society, 2015, 40(5): 973-978. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201505002.htm
    [9] 马立强, 张东升, 王烁康, 等. "采充并行"式保水采煤方法[J]. 煤炭学报, 2018, 43(1): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201801008.htm

    MA Liqiang, ZHANG Dongsheng, WANG Shuokang, et al. Water-preserved mining with the method named "backfilling while mining"[J]. Journal of China Coal Society, 2018, 43(1): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201801008.htm
    [10] 范立民. 保水采煤的科学内涵[J]. 煤炭学报, 2017, 42(1): 27-35. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701004.htm

    FAN Limin. Scientific connotation of water-preserved mining[J]. Journal of China Coal Society, 2017, 42(1): 27-35. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701004.htm
    [11] 董书宁, 杨志斌, 姬中奎, 等. 神府矿区大型水库旁烧变岩水保水开采技术研究[J]. 煤炭学报, 2019, 44(3): 709-717. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201903007.htm

    DONG Shuning, YANG Zhibin, JI Zhongkui, et al. Study on water-preserved mining technology of burnt rock aquifer beside the large reservoir in Shenfu mining area[J]. Journal of China Coal Society, 2019, 44(3): 709-717. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201903007.htm
    [12] 张雁, 黄选明, 彭巍, 等. 截水帷幕在露天煤矿截渗减排中的应用[J]. 煤炭学报, 2020, 45(5): 1865-1873. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005032.htm

    ZHANG Yan, HUANG Xuanming, PENG Wei, et al. Application of water cutoff curtain in the seepage cutoff and drainage reduction of open-pit coal mine[J]. Journal of China Coal Society, 2020, 45(5): 1865-1873. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005032.htm
    [13] 顾大钊, 张勇, 曹志国. 我国煤炭开采水资源保护利用技术研究进展[J]. 煤炭科学技术, 2016, 44(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201601001.htm

    GU Dazhao, ZHANG Yong, CAO Zhiguo. Technical progress of water resource protection and utilization by coal mining in China[J]. Coal Science and Technology, 2016, 44(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201601001.htm
    [14] 顾大钊. 煤矿地下水库理论框架和技术体系[J]. 煤炭学报, 2015, 40(2): 239-246. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201502001.htm

    GU Dazhao. Theory framework and technological system of coal mine underground reservoir[J]. Journal of China Coal Society, 2015, 40(2): 239-246. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201502001.htm
    [15] 任学勤, 程晓博, 王文才, 等. 基于"两零循环"的矿井水综合利用技术[J]. 河北冶金, 2019(9): 79-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HBYJ201909018.htm

    REN Xueqin, CHENG Xiaobo, WANG Wencai, et al. Comprehensive utilization technology of mine water based on "two zero cycle"[J]. Hebei Metallurgy, 2019(9): 79-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HBYJ201909018.htm
    [16] 李世峰, 高文婷, 牛永强, 等. 矿井废水回灌工程试验研究[J]. 河北工程大学学报(自然科学版), 2012, 29(3): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXU201204018.htm

    LI Shifeng, GAO Wenting, NIU Yongqiang, et al. The experimental study on recharge engineering of mine wastewater[J]. Journal of Hebei University of Engineering(Natural Science Edition), 2012, 29(3): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXU201204018.htm
    [17] 孙亚军, 张梦飞, 高尚, 等. 典型高强度开采矿区保水采煤关键技术与实践[J]. 煤炭学报, 2017, 42(1): 56-65. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701008.htm

    SUN Yajun, ZHANG Mengfei, GAO Shang, et al. Water-preserved mining technology and practice in typical high intensity mining area of China[J]. Journal of China Coal Society, 2017, 42(1): 56-65. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701008.htm
    [18] 曾繁富, 左明星, 宋洪柱, 等. 乌审旗一带刘家沟组作为高矿化度矿井水回灌目的层的可行性分析[J]. 煤炭与化工, 2020, 43(11): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-HHGZ202011016.htm

    ZENG Fanfu, ZUO Mingxing, SONG Hongzhu, et al. Feasibility analysis of the Liujiagou Group in the Wushen Banner area as a target layer for water recharge in highly mineralized mines[J]. Coal and Chemical Industry, 2020, 43(11): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-HHGZ202011016.htm
    [19] 杨光辉, 朱开成, 晏嘉. 基于屈服强度理论的深埋砂岩可注性研究[J]. 中国煤炭地质, 2020, 32(8): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT202008012.htm

    YANG Guanghui, ZHU Kaicheng, YAN Jia. Study on deeply buried sandstone water inject ability based on yield strength theory[J]. Coal Geology of China, 2020, 32(8): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT202008012.htm
    [20] 陈歌. 鄂尔多斯盆地东缘矿井水深部转移存储机理研究[D]. 徐州: 中国矿业大学, 2020.

    CHEN Ge. Study on the deep transfer and storage mechanism of mine water in the eastern margin of Ordos basin[D]. Xuzhou: China University of Mining and Technology, 2020.
    [21] 卞伟, 李井峰, 顾大钊, 等. 西部矿区高矿化度矿井水膜蒸馏处理技术[J]. 煤炭科学技术. http://kns.cnki.net/kcms/detail/11.2402.TD.20200207.1604.027.html

    BIAN Wei, LI Jingfeng, GU Dazhao, et al. Technology of membrane distillation treatment for highly-mineralized mine water in western mining area[J]. Coal Science and Technology. http://kns.cnki.net/kcms/detail/11.2402.TD.20200207.1604.027.html
    [22] 葛光荣, 吴一平, 张全. 高矿化度矿井水适度脱盐工艺研究[J]. 煤炭科学技术. https://kns.cnki.net/kcms/detail/11.2402.TD.20210129.1629.002.html

    GE Guangrong, WU Yiping, ZHANG Quan. Study on the moderate desalination process of high salinity mine water[J]. Coal Science and Technology[J]. https://kns.cnki.net/kcms/detail/11.2402.TD.20210129.1629.002.html
    [23] 周新平, 邓秀芹, 李士祥, 等. 鄂尔多斯盆地延长组下组合地层水特征及其油气地质意义[J]. 岩性油气藏, 2021, 33(1): 109-120. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202101011.htm

    ZHOU Xinping, DENG Xiuqin, LI Shixiang, et al. Characteristics of formation water and its geological significance of lower combination of Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2021, 33(1): 109-120. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202101011.htm
    [24] 战沙, 张金功, 席辉. 鄂尔多斯盆地苏里格地区上古生界主要裂缝的测井识别[J]. 内蒙古石油化工, 2010, 36(10): 64-66. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH201010026.htm

    ZHAN Sha, ZHANG Jingong, XI Hui. Logging identification of the main fractures in the upper Paleozoic in Sulige area of Ordos basin[J]. Inner Mongolia Petrochemical Industry, 2010, 36(10): 64-66. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH201010026.htm
    [25] 谭聪. 鄂尔多斯盆地上二叠统-中上三叠统沉积特征及古气候演化[D]. 北京: 中国地质大学(北京), 2017.

    TAN Cong. Sedimentary characteristics and paleocliamate evolution of the upper Permian and middle upper Triassic strata in Ordos Basin, China[D]. Beijing: China University of Geosciences(Beijing), 2017.
    [26] 刁玉杰. 神华CCS示范工程场地储层表征与CO2运移规律研究[D]. 北京: 中国矿业大学(北京), 2017.

    DIAO Yujie. Study on the reservoir characterization and CO2 migration underground in the Shenhua CCS demonstration project site[D]. Beijing: China University of Geosciences(Beijing), 2017.
    [27] 江成鑫, 赵江, 张洪文. 复杂岩溶条件下锰矿尾矿库地下水溶质运移特征数值模拟研究[J]. 中国环境监测, 2021, 37(1): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB202101017.htm

    JIANG Chengxin, ZHAO Jiang, ZHANG Hongwen. Numerical simulation of solute transport characteristics in groundwater of manganese tailings reservoir under complex karst conditions[J]. Environmental Monitoring in China, 2021, 37(1): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB202101017.htm
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  300
  • HTML全文浏览量:  58
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-08
  • 修回日期:  2021-08-05
  • 发布日期:  2021-10-25
  • 网络出版日期:  2021-11-06

目录

    /

    返回文章
    返回