留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

山东新巨龙煤矿区场地高TDS地下水水化学特征及成因机制

张玉卓 徐智敏 张莉 吕伟魁 袁慧卿 周丽洁 高雅婷 朱璐璐

张玉卓, 徐智敏, 张莉, 吕伟魁, 袁慧卿, 周丽洁, 高雅婷, 朱璐璐. 山东新巨龙煤矿区场地高TDS地下水水化学特征及成因机制[J]. 煤田地质与勘探, 2021, 49(5): 52-62. doi: 10.3969/j.issn.1001-1986.2021.05.006
引用本文: 张玉卓, 徐智敏, 张莉, 吕伟魁, 袁慧卿, 周丽洁, 高雅婷, 朱璐璐. 山东新巨龙煤矿区场地高TDS地下水水化学特征及成因机制[J]. 煤田地质与勘探, 2021, 49(5): 52-62. doi: 10.3969/j.issn.1001-1986.2021.05.006
ZHANG Yuzhuo, XU Zhimin, ZHANG Li, LYU Weikui, YUAN Huiqing, ZHOU Lijie, GAO Yating, ZHU Lulu. Hydrochemical characteristics and genetic mechanism of high TDS groundwater in Xinjulong Coal Mine[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 52-62. doi: 10.3969/j.issn.1001-1986.2021.05.006
Citation: ZHANG Yuzhuo, XU Zhimin, ZHANG Li, LYU Weikui, YUAN Huiqing, ZHOU Lijie, GAO Yating, ZHU Lulu. Hydrochemical characteristics and genetic mechanism of high TDS groundwater in Xinjulong Coal Mine[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 52-62. doi: 10.3969/j.issn.1001-1986.2021.05.006

山东新巨龙煤矿区场地高TDS地下水水化学特征及成因机制

doi: 10.3969/j.issn.1001-1986.2021.05.006
基金项目: 

国家重点研发计划项目 2019YFC1805400

中央高校基本科研业务费专项资金项目 2020ZDPY0201

详细信息
    第一作者:

    张玉卓,1996年生,女,陕西西安人,硕士研究生,研究方向为水文地质及矿井水害防治. E-mail: zyz1996@cumt.edu.cn

    通信作者:

    徐智敏,1981年生,男,四川简阳人,博士,副教授,博士生导师,研究方向为矿井水文地质及矿井水害防治. E-mail: xuzhimin@cumt.edu.cn

  • 中图分类号: P641.3

Hydrochemical characteristics and genetic mechanism of high TDS groundwater in Xinjulong Coal Mine

  • 摘要: 针对山东巨野新巨龙煤矿区地下水高TDS的现状,基于历史水质资料和取样测试结果,运用Piper三线图、相关性分析、氢氧同位素、Gibbs图解、离子比值与饱和指数等方法,探究其高TDS地下水水化学特征及成因。结果表明:随着建井和煤矿开采,研究区水化学环境发生改变,水化学类型不再是单一的SO4-Na型,深层灰岩水的类型中出现SO4·HCO3-Na和SO4-Ca·Mg型;研究区高TDS地下水的形成主要是因为含水层水动力条件差,高温水岩作用强,溶滤、蒸发浓缩作用明显,同时存在一定程度的反向阳离子交换作用;地下水体中白云岩和方解石表现为沉淀状态,石膏和盐岩处于溶解状态,是地下水主要成分Na+和SO42-的主要来源。研究成果不但为研究矿井水的构成、揭示煤矿区地下水污染及多场耦合的地下水演化过程和成因机制提供依据,还可为煤炭开采水害防治和矿井水处理利用奠定基础。

     

  • 图  新巨龙煤矿水文地质柱状图

    Fig. 1  Hydrogeological histogram of Xinjulong Coal Mine

    图  新巨龙煤矿地下水Durov图

    Fig. 2  Durov diagram of groundwater in Xinjulong Coal Mine

    图  新巨龙煤矿地下水Piper三线图

    Fig. 3  Piper diagram of groundwater in Xinjulong Coal Mine

    图  新巨龙煤矿区地下水δ2H与δ18O的相关关系

    Fig. 4  Relations between δ2H and δ18O of groundwater in Xinjulong Coal Mine

    图  新巨龙煤矿地下水Gibbs图

    Fig. 5  Gibbs diagram of groundwater in Xinjulong Coal Mine

    图  新巨龙煤矿地下水离子比值关系

    Fig. 6  Diagram of ion raties of groundwater in Xinjulong Coal Mine

    图  氯碱指数

    Fig. 7  Chloro-Alkaline indices

    图  新巨龙煤矿γ(Ca2++Mg2+-SO42--HCO3-)和γ(Na+-Cl-)比值关系

    Fig. 8  Diagram of γ(Ca2++Mg2+-SO42--HCO3-)/γ(Na+-Cl-) of groundwater in Xinjulong Coal Mine

    图  新巨龙煤矿地下水SI与TDS关系

    Fig. 9  Correlation between SI and TDS of groundwater in Xinjulong Coal Mine

    表  1  含水层水化学参数统计特征值

    Table  1  Hydrochemical analysis data in groundwater of each aquifer

    含水层 指标 各离子质量浓度ρ/(mg·L-1) TDS/(mg·L-1) pH值
    Na++K+ Ca2+ Mg2+ Cl- SO42- HCO3-
    新近系含水层 Min 362.43 288.12 23.53 50.88 2 087.64 5.61 3 190.75 6.50
    Max 1 980.78 499.90 257.56 106.32 5 729.88 196.55 8 429.66 9.90
    Avg 1 723.48 416.81 159.68 85.86 4 991.42 119.24 7 446.65 8.21
    SD 382.97 71.38 57.97 13.54 907.76 48.19 1 315.89 0.71
    CV 0.22 0.17 0.36 0.16 0.18 0.40 0.18 0.09
    山西组3砂含水层 Min 1 249.77 22.47 7.34 50.81 2 141.11 141.01 4 045.74 7.30
    Max 2 030.28 506.21 224.43 673.91 5 637.86 1 119.98 8 467.84 8.40
    Avg 1 603.62 216.18 87.09 121.51 3 777.36 325.33 5 972.35 7.82
    SD 223.63 126.95 56.25 114.39 998.27 208.18 1 282.29 0.33
    CV 0.14 0.59 0.65 0.94 0.26 0.64 0.21 0.04
    太原组三灰含水层 Min 703.96 19.77 9.33 92.29 845.19 146.92 2 720.44 7.15
    Max 1 489.24 376.34 113.27 294.19 3 397.29 1 239.70 5 383.68 8.40
    Avg 1 184.29 157.18 60.20 198.28 2 500.10 344.41 4 274.74 7.80
    SD 192.63 91.58 26.59 54.79 488.44 244.67 526.90 0.38
    CV 0.16 0.58 0.44 0.28 0.20 0.71 0.12 0.05
    奥陶系含水层 Min 422.28 1.60 1.01 132.44 310.35 138.64 1 326.22 7.20
    Max 1 630.91 578.01 154.92 394.17 4 516.08 300.23 6 918.55 11.10
    Avg 762.85 299.52 74.75 313.34 1 980.66 215.71 3 539.01 8.07
    SD 335.26 154.07 46.19 65.64 983.35 46.98 1 304.01 1.31
    CV 0.44 0.51 0.62 0.21 0.50 0.22 0.37 0.16
    注:Min为最小值;Max为最大值;Avg为平均值;SD为标准差;CV为变异系数,无量纲。
    下载: 导出CSV

    表  2  氢氧同位素数据

    Table  2  Hydrogen and oxygen isotope data

    水样 δ2H/‰ δ18O/‰ d2H-8δ18O
    雨水 -28.1 -5.09 12.62
    01地表排水口 -65.4 -9.35 9.40
    02洙水河交汇处 -62.6 -8.64 6.52
    03洙水河上游 -54.1 -6.91 1.18
    04洙水河下游 -62.8 -8.36 4.08
    05水仓 -64.2 -8.60 4.60
    06岩巷淋水 -60.1 -8.07 4.46
    07煤巷淋水 -58.5 -7.83 4.14
    08老空水 -56.2 -7.12 0.76
    09奥灰水 -55.4 -6.48 -3.56
    10 3砂水 -53.4 -6.40 -2.20
    11三灰水 -55.2 -6.32 -4.64
    注:d为氘过量参数。
    下载: 导出CSV

    表  3  含水层水化学指标相关系数矩阵

    Table  3  Correlation coefficient matrix of aquifer water chemical composition

    含水层 指标 Na++K+ Ca2+ Mg2+ Cl- SO42- HCO3- TDS
    新近系含水层 Na++K+ 1
    Ca2+ 0.011 1
    Mg2+ 0.097 0.808** 1
    Cl- -0.198 0.149 -0.005 1
    SO42- 0.907** 0.395 0.487 -0.100 1
    HCO3- 0.121 0.539* 0.759** -0.169 0.395 1
    TDS 0.919** 0.375 0.463 -0.109 0.999** 0.384 1
    山西组3砂含水层 Na++K+ 1
    Ca2+ 0.726** 1
    Mg2+ 0.610** 0.856** 1
    Cl- -0.379* -0.318 0.090 1
    SO42- 0.894** 0.927** 0.748** -0.485** 1
    HCO3- -0.213 -0.365 -0.022 0.709** -0.453* 1
    TDS 0.919** 0.927** 0.824** -0.325 0.980** -0.285 1
    太原组三灰含水层 Na++K+ 1
    Ca2+ -0.604** 1
    Mg2+ -0.496* 0.850** 1
    Cl- -0.669** 0.443* 0.330 1
    SO42- 0.510* 0.306 0.428 -0.319 1
    HCO3- 0.051 -0.642** -0.722** -0.176 -0.778** 1
    TDS 0.652** 0.176 0.280 -0.384 0.976** -0.639** 1
    奥灰含水层 Na++K+ 1
    Ca2+ -0.086 1
    Mg2+ 0.468 0.828** 1
    Cl- -0.952** -0.206 -.690* 1
    SO42- 0.833** 0.475 0.873** -0.951** 1
    HCO3- 0.361 -0.176 -0.015 -0.300 0.194 1
    TDS 0.845** 0.458 0.864** -0.957** 1.000** 0.211 1
    注:*表示相关性显著水平在0.05(双尾);**表示相关性显著水平在0.01(双尾)。
    下载: 导出CSV
  • [1] 闫晗. 煤炭工业发展"十三五"规划重点内容分析[J]. 今日工程机械, 2017(1): 31-33.. doi: 10.3969/j.issn.1671-9018.2017.01.011

    YAN Han. Analysis of the key contents of the 13th Five-Year Plan for the development of the coal industry[J]. Construction Machinery Today, 2017(1): 31-33.. doi: 10.3969/j.issn.1671-9018.2017.01.011
    [2] 孙亚军, 陈歌, 徐智敏, 等. 我国煤矿区水环境现状及矿井水处理利用研究进展[J]. 煤炭学报, 2020, 45(1): 304-316. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001031.htm

    SUN Yajun, CHEN Ge, XU Zhimin, et al. Research progress of water environment, treatment and utilization in coal mining areas of China[J]. Journal of China Coal Society, 2020, 45(1): 304-316. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001031.htm
    [3] 李定龙, 周治安. 临涣矿区底含水文地球化学特征及其工程地质意义[J]. 安徽地质, 1993, 3(4): 54-61. https://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ199304008.htm

    LI Dinglong, ZHOU Zhi'an. Hydrogeochemical characteristics of bottom aquifer and its significance of engineering geology in Linhuan mining area[J]. Geology of Anhui, 1993, 3(4): 54-61. https://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ199304008.htm
    [4] 贾秀梅, 孙继朝, 周骏业, 等. 神府煤田大柳塔矿区水文地球化学研究[J]. 地球学报, 1998(4): 357. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB804.003.htm

    JIA Xiumei, SUN Jichao, ZHOU Junye, et al. Hydrogeochemistry research about Daliuta mining area of Shenfu coalfield[J]. Acta Geoscientica Sinica, 1998(4): 357. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB804.003.htm
    [5] 王广才, 段琦, 卜昌森, 等. 水文地球化学方法在煤矿水害研究中的某些应用: 以平顶山、肥城矿区研究为例[J]. 地质论评, 2001, 47(6): 653-657.. doi: 10.3321/j.issn:0371-5736.2001.06.015

    WANG Guangcai, DUAN Qi, BU Changsen, et al. Applications of hydrogeochemical methods to the study of groundwater hazards at the Pingdingshan and Feicheng coal mines, China[J]. Geological Review, 2001, 47(6): 653-657.. doi: 10.3321/j.issn:0371-5736.2001.06.015
    [6] 桂和荣, 陈陆望, 彭子成. 皖北矿区深层岩溶水微量元素主成分分析[J]. 煤田地质与勘探, 2004, 32(6): 31-34.. doi: 10.3969/j.issn.1001-1986.2004.06.010

    GUI Herong, CHEN Luwang, PENG Zicheng. The major constituent analysis of trace element for deep-seated karst water in mining area in northern Anhui[J]. Coal Geology & Exploration, 2004, 32(6): 31-34.. doi: 10.3969/j.issn.1001-1986.2004.06.010
    [7] 谢文苹, 冯晓青, 张能钦, 等. 皖北矿区地下水稀土元素地球化学特征研究[J]. 广西大学学报(自然科学版), 2015, 40(6): 1562-1569. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201506030.htm

    XIE Wenping, FENG Xiaoqing, ZHANG Nengqin, et al. Research on geochemical characteristics of rare earth elements in groundwater in North Anhui mining area[J]. Journal of Guangxi University(Natural Science Edition), 2015, 40(6): 1562-1569. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201506030.htm
    [8] 武亚遵, 潘春芳, 林云, 等. 鹤壁矿区奥陶系灰岩地下水水文地球化学特征及反向模拟[J]. 水资源与水工程学报, 2018, 29(4): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201804005.htm

    WU Yazun, PAN Chunfang, LIN Yun, et al. Hydrogeochemical characteristics and its reverse simulation of Ordovician limestone groundwater in Hebi mining area[J]. Journal of Water Resources and Water Engineering, 2018, 29(4): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201804005.htm
    [9] 冯海波, 董少刚, 张涛, 等. 典型草原露天煤矿区地下水环境演化机理研究[J]. 水文地质工程地质, 2019, 46(1): 163-172. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201901022.htm

    FENG Haibo, DONG Shaogang, ZHANG Tao, et al. Evolution mechanism of a groundwater system in the opencast coalmine area in the typical prairie[J]. Hydrogeology & Engineering Geology, 2019, 46(1): 163-172. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201901022.htm
    [10] 张保祥, 张超. 水文地球化学方法在地下水研究中的应用综述[J]. 人民黄河, 2019, 41(10): 135-142.. doi: 10.3969/j.issn.1000-1379.2019.10.023

    ZHANG Baoxiang, ZHANG Chao. Progress on hydrogeochemical method applied in groundwater study[J]. Yellow River, 2019, 41(10): 135-142.. doi: 10.3969/j.issn.1000-1379.2019.10.023
    [11] RAZACK M, DAZY J. Hydrochemical characterization of groundwater mixing in sedimentary and metamorphic reservoirs with combined use of Piper's principle and factor analysis[J]. Journal of Hydrology, 1990, 114(3/4): 371-393. http://www.sciencedirect.com/science/article/pii/0022169490900667
    [12] KARMEGAM U, CHIDAMBARAM S, PRASANNA M V, et al. A study on the mixing proportion in groundwater samples by using Piper diagram and Phreeqc model[J]. Chinese Journal of Geochemistry, 2011, 30: 490.. doi: 10.1007/s11631-011-0533-3
    [13] AL-BASSAM A M, KHALIL A R. DurovPwin: A new version to plot the expanded Durov diagram for hydro-chemical data analysis[J]. Computers and Geosciences, 2012, 42: 1-6.. doi: 10.1016/j.cageo.2012.02.005
    [14] MARANDI A, SHAND P. Groundwater chemistry and the Gibbs Diagram[J]. Applied Geochemistry, 2018, 97: 209-212.. doi: 10.1016/j.apgeochem.2018.07.009
    [15] SINGH K P, MALIK A, SINHA S. Water quality assessment and apportionment of pollution sources of Gomti river(India)using multivariate statistical techniques: A case study[J]. Analytica Chimica Acta, 2005, 538(1/2): 355-374. http://www.onacademic.com/detail/journal_1000034046150910_0a72.html
    [16] PARIZI H S, SAMANI N. Geochemical evolution and quality assessment of water resources in the Sarcheshmeh copper mine area(Iran) using multivariate statistical techniques[J]. Environmental Earth Sciences, 2013, 69: 1699-1718.. doi: 10.1007/s12665-012-2005-4
    [17] 陈盟, 吴勇, 高东东, 等. 广汉市平原区浅层地下水化学演化及其控制因素[J]. 吉林大学学报(地球科学版), 2016, 46(3): 831-843. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201603019.htm

    CEHN Meng, WU Yong, GAO Dongdong, et al. Shallow groundwater hydrogeochemical evolution process and controlling factors in plain zone of Guanghan City[J]. Journal of Jilin University(Earth Science Edition), 2016, 46(3): 831-843. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201603019.htm
    [18] 徐芬, 马腾, ELLIS A, 等. 地下水中稳定铬同位素的生物地球化学作用[J]. 地学前缘, 2012, 19(4): 183-193. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201204021.htm

    XU Fen, MA Teng, ELLIS A, et al. Biogeochemical processes of chromium stable isotope in groundwater[J]. Earth Science Frontiers, 2012, 19(4): 183-193. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201204021.htm
    [19] MEREDITH K T, HAN L F, HOLLINS S E, et al. Evolution of chemical and isotopic composition of inorganic carbon in a complex semi-arid zone environment: Consequences for groundwater dating using radiocarbon[J]. Geochimica et Cosmochimica Acta, 2016, 188: 352-367.. doi: 10.1016/j.gca.2016.06.011
    [20] 李七明, 翟立娟, 傅耀军, 等. 华北型煤田煤层开采对含水层的破坏模式研究[J]. 中国煤炭地质, 2012, 24(7): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201207010.htm

    LI Qiming, ZHAI Lijuan, FU Yaojun, et al. A study on coal mining aquifer destruction mode in North China typed coalfields[J]. Coal Geology of China, 2012, 24(7): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201207010.htm
    [21] 高柏, 王广才, 周来逊, 等. 华北型煤田岩溶水水文地球化学研究进展[J]. 水文地质工程地质, 2009, 36(3): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200903015.htm

    GAO Bai, WANG Guangcai, ZHOU Laixun, et al. Advances in the study of hydrogeochemistry of karstic groundwater in coal mines in North China[J]. Hydrogeology Engineering Geology, 2009, 36(3): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200903015.htm
    [22] 肖同强. 深部构造应力作用下厚煤层巷道围岩稳定与控制研究[D]. 徐州: 中国矿业大学, 2011.

    XIAO Tongqiang. Study on surrounding rock stability and control of deep roadway in thick coal seam under the action of tectonic stress[D]. Xuzhou: China University of Mining and Technology, 2011.
    [23] OZYURT N N, LUTZ H O, HUNJAK T, et al. Characterization of the Gacka River basin karst aquifer(Croatia): Hydrochemistry, stable isotopes and tritium-based mean residence times[J]. Science of the Total Environment, 2014, 487: 245-254.. doi: 10.1016/j.scitotenv.2014.04.018
    [24] 刘凯, 刘颖超, 孙颖, 等. 北京地区地热水氘过量参数特征分析[J]. 中国地质, 2015, 42(6): 2029-2035. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201506029.htm

    LIU Kai, LIU Yingchao, SUN Ying, et al. Characteristics of deuterium excess parameters of geothermal water in Beijing[J]. Geology in China, 2015, 42(6): 2029-2035. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201506029.htm
    [25] 蒋万军, 赵丹, 王广才, 等. 新疆吐-哈盆地地下水水文地球化学特征及形成作用[J]. 现代地质, 2016, 30(4): 825-833. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201604011.htm

    JIANG Wanjun, ZHAO Dan, WANG Guangcai, et al. Hydro-geochemical characteristics and formation of groundwater in Tu-Ha basin, Xinjiang[J]. Geoscience, 2016, 30(4): 825-833. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201604011.htm
    [26] 李学礼, 孙占学, 刘金辉. 水文地球化学[M]. 北京: 原子能出版社, 1988.

    LI Xueli, SUN Zhanxue, LIU Jinhui. Hydrogeochemistry[M]. Beijing: Atomic Energy Press, 1988.
    [27] 张成行, 郑洁铭, 徐智敏, 等. 基于水化学特征的顺和煤矿太灰水动力条件分析[J]. 煤炭工程, 2020, 52(6): 126-129. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202006027.htm

    ZHANG Chenghang, ZHENG Jieming, XU Zhimin, et al. Hydrodynamic conditions analysis of Taiyuan formation limestone aquifer in Shunhe coal mine based on hydrochemical characteristics[J]. Coal Engineering, 2020, 52(6): 126-129. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202006027.htm
    [28] 丁贞玉, 马金珠, 何建华. 腾格里沙漠西南缘地下水水化学形成特征及演化[J]. 干旱区地理, 2009, 32(6): 948-957. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL200906020.htm

    DING Zhenyu, MA Jinzhu, HE Jianhua. Geochemical evolution of groundwater in the southwest of Tengger desert, NW of China[J]. Arid Land Geography, 2009, 32(6): 948-957. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL200906020.htm
    [29] 贾振兴, 臧红飞, 郑秀清. 柳林泉域滞流区岩溶水的热源及其Na+、Cl-来源探讨[J]. 中国岩溶, 2015, 34(6): 570-576. https://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsQ0hJTmV3UzIwMjExMDI2Eg16Z3lyMjAxNTA2MDA1Gggzc3ZjeTJleg%3D%3D

    JIA Zhenxing, ZANG Hongfei, ZHENG Xiuqing. The origin of Na+, Cl- and thermal source of karst groundwater in the stagnant area of Liulin spring basin[J]. Carsologica Sinica, 2015, 34(6): 570-576. https://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsQ0hJTmV3UzIwMjExMDI2Eg16Z3lyMjAxNTA2MDA1Gggzc3ZjeTJleg%3D%3D
    [30] 孙厚云, 毛启贵, 卫晓锋, 等. 哈密盆地地下水系统水化学特征及形成演化[J]. 中国地质, 2018, 45(6): 1128-1141. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201806005.htm

    SUN Houyun, MAO Qigui, WEI Xiaofeng, et al. Hydrogeochemical characteristics and formation evolutionary mechanism of the groundwater system in the Hami basin[J]. Geology in China, 2018, 45(6): 1128-1141. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201806005.htm
    [31] 张泽源, 许峰, 王世东, 等. 保德煤矿奥陶纪灰岩水水化学特征及形成机理[J]. 煤田地质与勘探, 2020, 48(5): 81-88. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=9e03493a-af2e-472b-9233-05a1cd907f08

    ZHANG Zeyuan, XU Feng, WANG Shidong, et al. Hydrochemical characteristics and formation mechanism of Ordovician limestone water in Baode coal mine[J]. Coal Geology & Exploration, 2020, 48(5): 81-88. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=9e03493a-af2e-472b-9233-05a1cd907f08
    [32] 刘江涛, 蔡五田, 曹月婷, 等. 沁河冲洪积扇地下水水化学特征及成因分析[J]. 环境科学, 2018, 39(12): 5428-5439. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201812016.htm

    LIU Jiangtao, CAI Wutian, CAO Yueting, et al. Hydrochemical characteristics of groundwater and the origin in alluvial-proluvial fan of Qinhe river[J]. Environmental Science, 2018, 39(12): 5428-5439. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201812016.htm
    [33] ZHU Ge, WU Xiong, GE Jianping, et al. Influence of mining activities on groundwater hydrochemistry and heavy metal migration using a self-organizing map(SOM)[J]. Journal of Cleaner Production, 2020, 257: 120664. http://www.sciencedirect.com/science/article/pii/S0959652620307113
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  381
  • HTML全文浏览量:  61
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-19
  • 修回日期:  2021-06-21
  • 发布日期:  2021-10-25
  • 网络出版日期:  2021-11-06

目录

    /

    返回文章
    返回