留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同年限采空区下地震勘探效果实例研究

张昭 殷全增

张昭, 殷全增. 不同年限采空区下地震勘探效果实例研究[J]. 煤田地质与勘探, 2021, 49(6): 237-242. doi: 10.3969/j.issn.1001-1986.2021.06.028
引用本文: 张昭, 殷全增. 不同年限采空区下地震勘探效果实例研究[J]. 煤田地质与勘探, 2021, 49(6): 237-242. doi: 10.3969/j.issn.1001-1986.2021.06.028
ZHANG Zhao, YIN Quanzeng. Case study on the effects of seismic exploration beneath the goafs of different ages[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 237-242. doi: 10.3969/j.issn.1001-1986.2021.06.028
Citation: ZHANG Zhao, YIN Quanzeng. Case study on the effects of seismic exploration beneath the goafs of different ages[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 237-242. doi: 10.3969/j.issn.1001-1986.2021.06.028

不同年限采空区下地震勘探效果实例研究

doi: 10.3969/j.issn.1001-1986.2021.06.028
基金项目: 

河北省煤田地质局物测地质队科研项目 HBWCD-W-2019-9

详细信息
    第一作者:

    张昭,1983年生,男,河北平山人,高级工程师,从事煤田地震勘探工作. E-mail:41563199@qq.com

    通信作者:

    殷全增,1965年生,河北邢台人,正高级工程师,从事煤田地质、物探等工作. E-mail:13931909280@126.com

  • 中图分类号: P631

Case study on the effects of seismic exploration beneath the goafs of different ages

  • 摘要: 随着煤炭资源的持续开发,部分煤矿上组煤已经开采殆尽,亟需开展下组煤的探测工作。受上组煤采空影响,下组煤地震波能量吸收和散射衰减严重,资料信噪比低,三维地震对采空区下组煤的探测尚属于探索阶段。以冀中能源东庞矿采空区下组煤三维地震勘探项目为例,采用“两宽一高”采集、高精度资料处理和属性体解释等技术,对不同年限采空区下组煤的探测效果进行了对比分析。结果表明:采用“两宽一高”采集技术能够获取采空区下组煤的地震信息;振幅补偿、地震拓频技术使得9号煤反射波波组丰富、连续性好;采空区年限大于10年时,破碎岩层压实,相对稳定,下组煤反射波利于追踪,而小于10年时,岩层破碎未压实,导致下组煤反射波能量弱、杂乱无章。这一认识对于类似煤矿采空区下组煤探测具有一定的指导意义。

     

  • 图  不同时期采空区分布

    Fig. 1  Distribution of goafs in different periods

    图  Butterworth子波双向拓频前后偏移剖面及频谱

    Fig. 2  Comparison of migration profile and spectrum before and after bidirectional frequency extension of the Butterworth wavelet

    图  三维数据体煤层沿层切片

    Fig. 3  3D data volume slicing along the seam

    图  不同年限采空区下组煤反射波特征

    Fig. 4  Reflection characteristics of the lower group of coal beneath the goafs of different ages

    表  1  研究区煤层参数统计

    Table  1  Coal seam parameters of the study area

    地层 煤层编号 见煤孔数 厚度/m 间距/m 倾角/(°)
    山西组 2 39 0.64~6.25/4.40 23.50~36.50/30.20 11~37
    太原组 3 33 0.13~1.481/0.61 41.30~67.006/54.56 3~33
    6 28 0.30~2.03/1.21 12.30~29.20/21.99
    7 40 0.41~4.530/1.13 21.70~50.60/32.27
    8 37 0.25~2.071/0.84 9.00~39.40/25.51
    9 37 2.90~12.17/6.34
    注:0.64~6.25/4.40表示最小~最大值/平均值,其他数据同。
    下载: 导出CSV

    表  2  研究区采集参数

    Table  2  Collection of parameters of the study area

    项目 数值
    观测系统 14L×4S×112T×1R束状
    纵向排列/m 560-10-10-10-560
    接收网格/(m×m) 10×80
    激发网格/(m×m) 20×70
    CDP网格/(m×m) 5×10
    采样间隔/ms 0.5
    记录长度/s 2.0
    叠加次数 8×7= 56(纵向8次,横向7次)
    横纵比 0.93
    检波器型号 PS-10
    可控震源 Nomad 65
    扫描频率/Hz 6~96
    扫描长度/s 14
    振动台次 2台×6次
    驱动电平/% 75(遇障碍物酌减)
    下载: 导出CSV
  • [1] 张广忠, 张运成, 李长河, 等. 煤矿采空区下组煤三维地震勘探技术[J]. 煤田地质与勘探, 2009, 37(1): 66–68.. doi: 10.3969/j.issn.1001-1986.2009.01.014

    ZHANG Guangzhong, ZHANG Yuncheng, LI Changhe, et al. 3D seismic exploration technology for lower coal group in gob area[J]. Coal Geology & Exploration, 2009, 37(1): 66–68.. doi: 10.3969/j.issn.1001-1986.2009.01.014
    [2] 石瑜, 刘文明. 三维地震勘探技术在小窑采空区探测中的应用[J]. 工程地球物理学报, 2018, 15(5): 573–579.

    SHI Yu, LIU Wenming. Application of 3D seismic prospecting to small coal mined-out area[J]. Chinese Journal of Engineering Geophysics, 2018, 15(5): 573–579.
    [3] 唐汉平. 复杂地震地质条件下煤矿采空区三维地震勘探技术[J]. 中国煤炭, 2013, 39(12): 35–37.. doi: 10.3969/j.issn.1006-530X.2013.12.010

    TANG Hanping. 3D seismic prospecting technology in coal mine gob area with complex seismic geology[J]. China Coal, 2013, 39(12): 35–37.. doi: 10.3969/j.issn.1006-530X.2013.12.010
    [4] 李莲英, 薛俊杰, 赵煊煊, 等. 应用综合物探方法探查煤层采空区[J]. 物探与化探, 2017, 41(2): 377–380. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201702029.htm

    LI Lianying, XUE Junjie, ZHAO Xuanxuan, et al. The exploration of mined-out areas by integrated geophysical method[J]. Geophysical and Geochemical Exploration, 2017, 41(2): 377–380. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201702029.htm
    [5] 覃思, 程建远, 胡继武, 等. 煤矿采空区及巷道的井地联合地震超前勘探[J]. 煤炭学报, 2015, 40(3): 636–639.

    QIN Si, CHENG Jianyuan, HU Jiwu, et al. Coal-seam-ground-seismic for advance detection of goaf and roadway[J]. Journal of China Coal Society, 2015, 40(3): 636–639.
    [6] 刘银波. 采空区下三维地震勘探新技术研究及应用[J]. 煤炭与化工, 2017, 40(1): 136–140. https://www.cnki.com.cn/Article/CJFDTOTAL-HHGZ201701040.htm

    LIU Yinbo. Application and new industrial research of three-dimensional seismic exploration survey in goaf[J]. Coal and Chemical Industry, 2017, 40(1): 136–140. https://www.cnki.com.cn/Article/CJFDTOTAL-HHGZ201701040.htm
    [7] 张昭, 张龙飞, 段刚, 等. 基于正演模拟的煤层采空区地震响应特征[J]. CT理论与应用研究, 2021, 30(3): 291–300.

    ZHANG Zhao, ZHANG Longfei, DUAN Gang, et al. Seismic response characteristics of coal goaf based on forward modeling[J]. CT Theory and Applications, 2021, 30(3): 291–300.
    [8] 刘震, 王玉涛, 刘小平, 等. 深部条带开采覆岩"三带"探测及量化评判[J]. 煤田地质与勘探, 2020, 48(3): 17–23.. doi: 10.3969/j.issn.1001-1986.2020.03.003

    LIU Zhen, WANG Yutao, LIU Xiaoping, et al. Exploration and quantitative evaluation of overburden strata "three zones" in deep strip mining[J]. Coal Geology & Exploration, 2020, 48(3): 17–23.. doi: 10.3969/j.issn.1001-1986.2020.03.003
    [9] 杨勇, 陈清通. 综合物探方法在房采采空区勘查中的应用研究[J]. 中国煤炭, 2017, 43(8): 47–51.. doi: 10.3969/j.issn.1006-530X.2017.08.012

    YANG Yong, CHEN Qingtong. Application and study of integrated geophysical prospecting in gob exploration of room-and-pillar system[J]. China Coal, 2017, 43(8): 47–51.. doi: 10.3969/j.issn.1006-530X.2017.08.012
    [10] 唐汉平. 浅层煤矿采空区三维地震勘探技术[J]. 能源技术与管理, 2014, 39(4): 163–164. https://www.cnki.com.cn/Article/CJFDTOTAL-JSMT201404064.htm

    TANG Hanping. 3D seismic exploration technology of shallow coal mine goaf[J]. Energy Technology and Management, 2014, 39(4): 163–164. https://www.cnki.com.cn/Article/CJFDTOTAL-JSMT201404064.htm
    [11] 薛国强, 潘冬明, 于景邨. 煤矿采空区地球物理探测应用综述[J]. 地球物理学进展, 2018, 33(5): 2187–2192.

    XUE Guoqiang, PAN Dongming, YU Jingcun. Review the applications of geophysical methods for mapping coal-mine voids[J]. Progress in Geophysics, 2018, 33(5): 2187–2192.
    [12] 李钦锋. 采空区下高精度三维地震勘探及奥灰富水性探测新技术[J]. 煤炭与化工, 2016, 39(12): 24–26. https://www.cnki.com.cn/Article/CJFDTOTAL-HHGZ201612007.htm

    LI Qinfeng. New detection technology of Ordovician limestone water rich property and high accuracy 3D seismic exploration under goaf[J]. Coal and Chemical Industry, 2016, 39(12): 24–26. https://www.cnki.com.cn/Article/CJFDTOTAL-HHGZ201612007.htm
    [13] 程建远, 王千遥, 朱书阶. 煤矿采区高密度三维地震采集参数讨论[J]. 煤田地质与勘探, 2020, 48(6): 25–32.. doi: 10.3969/j.issn.1001-1986.2020.06.004

    CHENG Jianyuan, WANG Qianyao, ZHU Shujie. Discussion on parameters of high density 3D seismic exploration acquisition in coal mining districts[J]. Coal Geology & Exploration, 2020, 48(6): 25–32.. doi: 10.3969/j.issn.1001-1986.2020.06.004
    [14] 宁宏晓, 唐东磊, 皮红梅, 等. 国内陆上"两宽一高"地震勘探技术及发展[J]. 石油物探, 2019, 58(5): 645–653.. doi: 10.3969/j.issn.1000-1441.2019.05.002

    NING Hongxiao, TANG Donglei, PI Hongmei, et al. The technology and development of "WBH" seismic exploration in land, China[J]. Geophysical Prospecting for Petroleum, 2019, 58(5): 645–653.. doi: 10.3969/j.issn.1000-1441.2019.05.002
    [15] 杨光明, 金学良, 张宪旭, 等. 宽频宽方位处理技术在淮北矿区全数字高密度地震勘探中的应用[J]. 煤田地质与勘探, 2020, 48(6): 55–63. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=490d386e-ccbb-46b3-a218-7c92cff05656

    YANG Guangming, JIN Xueliang, ZHANG Xianxu, et al. Application of broadband and wide azimuth processing technology in full digital high density seismic exploration in Huaibei mining area[J]. Coal Geology & Exploration, 2020, 48(6): 55–63. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=490d386e-ccbb-46b3-a218-7c92cff05656
    [16] 刘依谋, 印兴耀, 张三元, 等. 宽方位地震勘探技术新进展[J]. 石油地球物理勘探, 2014, 49(3): 596–610. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201403034.htm

    LIU Yimou, YIN Xingyao, ZHANG Sanyuan, et al. Recent advances in wide-azimuth seismic exploration[J]. Oil Geophysical Prospecting, 2014, 49(3): 596–610. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201403034.htm
    [17] 刘俊, 赵伟, 韩必武. 淮南矿区高精度三维地震勘探技术应用[J]. 煤田地质与勘探, 2020, 48(6): 8–14. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=bc15d440-5208-4e19-97f5-d3e7b41d3a30

    LIU Jun, ZHAO Wei, HAN Biwu. Application of high-precision 3D seismic exploration technology in Huainan mining area[J]. Coal Geology & Exploration, 2020, 48(6): 8–14. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=bc15d440-5208-4e19-97f5-d3e7b41d3a30
    [18] 金学良, 王琦. 煤矿采区高密度三维地震勘探模式与效果[J]. 煤田地质与勘探, 2020, 48(6): 1–7. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=69a567c2-e6fa-4993-986e-8148661411aa

    JIN Xueliang, WANG Qi. Pattern and effect of the high density 3D seismic exploration in coal mining districts[J]. Coal Geology & Exploration, 2020, 48(6): 1–7. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=69a567c2-e6fa-4993-986e-8148661411aa
    [19] 莫亮台. 内蒙LZC地区煤层采空区地球物理综合探测方法研究[D]. 徐州: 中国矿业大学, 2019.

    MO Liangtai. Study on geophysical comprehensive exploration method of coal seam goaf in LZC area of Inner Mongolia[D]. Xuzhou: China University of Mining and Technology, 2019.
    [20] 李学文. 综合勘探技术在采空区探测中的应用[J]. 中国煤炭地质, 2015, 27(10): 58–61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201510014.htm

    LI Xuewen. Application of integrated prospecting technology in gob detection[J]. Coal Geology of China, 2015, 27(10): 58–61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201510014.htm
    [21] 田锦瑞, 亚东菊, 邱兆泰. 采空区在地震剖面上的波组特征及对比分析[J]. 煤炭与化工, 2017, 40(3): 105–107.

    TIAN Jinrui, YA Dongju, QIU Zhaotai. Wave group characteristics of goaf on the seismic profile and comparative analysis[J]. Coal and Chemical Industry, 2017, 40(3): 105–107.
    [22] 程彦, 赵镨, 林建东, 等. 地震波形分类技术在地质异常体解释中的应用[J]. 煤田地质与勘探, 2020, 48(6): 87–92. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=d8cd9e7f-846b-435c-b484-e7a0d3b9efa3

    CHENG Yan, ZHAO Pu, LIN Jiandong, et al. Application of seismic waveform classification technology in interpretation of geological abnormal body[J]. Coal Geology & Exploration, 2020, 48(6): 87–92. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=d8cd9e7f-846b-435c-b484-e7a0d3b9efa3
    [23] 肖立锋. 综合物探方法在采空区探测中的应用[J]. 工程地球物理学报, 2019, 16(5): 658–664. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ201905019.htm

    XIAO Lifeng. Application of integrated geophysical exploration method to exploring mined-out area[J]. Chinese Journal of Engineering Geophysics, 2019, 16(5): 658–664. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ201905019.htm
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  20
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-21
  • 修回日期:  2021-07-12
  • 发布日期:  2021-12-25
  • 网络出版日期:  2021-12-30

目录

    /

    返回文章
    返回