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Failure depths of stope floors under dynamic loading induced by roof breaking

HUANG Qisong'*?, XU Bo"**, FENG Junjun'?, LIN Xiaofei', CHENG Jiulong®, PENG Jun®*

(1. School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243032, China; 2. SINOsteel Ma’ anshan
General Institute of Mining Research Co., Ltd., Ma’anshan 243000, China; 3. College of Geoscience and Surveying Engineering,
China University of Mining and Technology (Beijing), Beijing 100083, China; 4. State Key Laboratory of
Safety and Health for Metal Mines, Ma’anshan 243000, China)

Abstract: [Objective] Accurately assessing the failure depths of stope floors is crucial for assessing floor water inrush
risks. Conventional theoretical models for calculating the failure depths generally merely consider static loads from the
support pressure and confined water's pressure in stopes, leading to large deviations between calculation results and actu-
al situations. Therefore, constructing a more practical computational model that comprehensively considers the coupled
effects of multiple force sources on the failure of deep floors can provide a scientific basis for the effective prevention

and control of water hazards in deep coal seam floors. [Methods] Based on the dynamic elasticity theory and the loads
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on a stope floor during roof weighting, this study constructed a computational model for the mechanical responses of the

stope floor under combined static and dynamic loads. Using this model, this study determined the law of the transfer of

dynamic load stress in the floor, as well as the dynamic response characteristics of the floor. Accordingly, this study ana-

lyzed the impacts of dynamic load disturbance induced by roof breaking on the failure depth of the stope floor. The con-

structed model was employed to investigate the floor failure depth of mining face 8031 within a coal mine in Feicheng,

Shandong Province using numerical simulations and in-situ water injection tests in boreholes. [Results and Conclu-

sions] The results indicate that the dynamic loads induced by roof breaking were superimposed with the static load stress

in the floor produced by the support pressure of the stope, leading to intense disturbances to the stress concentration and

unloading zones of the floor. The degree and range of the stress field concentration on the floor increased significantly

during dynamic loading. The dynamic load disturbance induced by roof breaking further intensified the failure of strata

in the stope floor. The theoretical calculation, simulation analysis, and field measurement results revealed similar depths

of 5.9, 6.6, and 6.3 m for the secondary floor failure caused by initial weighting-induced dynamic load disturbance, veri-

fying the accuracy of the theoretical model. The results can reflect the laws of the time and locations of water inrushes on

the floor, providing a significant theoretical basis and reference for the prevention and control of water inrushes from

deep floors.

Keywords: static and dynamic loads; mechanical model; floor failure depth; dynamic response; numerical simulation
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Fig.5 Contour maps showing the responses of the stress fields on the stope floor
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Table 1 Physical and mechanical parameters for various
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Table 2 Parameters for observation boreholes in the floor
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