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gasification through microbial degradation in a low-pressure environment. With low-rank bituminous coals (R, =
0.67%) as fermentable substrates, this study conducted a 96-day gas production experiment through microbial fermenta-
tion in a low-pressure CO, and H, environment. Using techniques including gas chromatography, 16S rRNA gene se-
quencing, and low-temperature liquid nitrogen adsorption, this study delved into the intrinsic variation patterns of bio-
genic gas production, microbial communities, and coal structures. [Results and Conclusions] The results indicate that
compared to conventional fermentation, the injection of low-pressure CO, inhibited CH, production, leading to a re-
duced CH, production efficiency. After the H, injection, the injected H, was consumed quickly, resulting in a rapid de-
crease in the H, concentration and contributing to CH, production. Meanwhile, the H, injection changed the production
mode of biogenic gas, exerting a profound influence on the structure of microbial communities in fermentable liquids.
Specifically, the relative abundance of Firmicutes and Bacteroidota increased. Notably, the S50 wastewater sludge
group in Bacteroidota always predominated, trending upward together with the unclassified W27 genus. This occurred
due to the late-stage H, injection, which accelerated the growth and metabolism of both bacterial genera. Regarding the
distribution of archaea at the genus level, Methanobacterium represented the highest proportion (47.66%—83.05%), fol-
lowed by Methanosarcina and Methanoculleus sequentially. Benefiting from the simultaneous consumption of H,, CO,,
and substrates such as acetic acid, the relative abundance of Methanosarcina exhibited a significant upward trend. In
contrast, Methanoculleus, which synthesizes methane via the hydrogenotrophic pathway, displayed a rapidly decreasing
relative abundance due to a shortage of H, in the later stage. Compared to the raw coals, coals with injected low-pres-
sure CO, exhibited a lower adsorption capacity, with the total pore volume and specific surface area decreasing. As more
low-pressure CO, was injected, fractal dimensions D, and D, trended downward and upward, respectively, suggesting an
increase in the surface roughness of coal pores and a decrease in the complexity/heterogeneity of pore structures. This is
inferred to be associated with the dual effects of microbial degradation and carbonate precipitation. The results of this
study enrich the fundamental theories on the microbial degradation of coals and the biological transformation and utiliza-
tion of CO,, especially providing a theoretical basis for the biological transformation and storage of CO, in coal seams.

Keywords: microbial transformation of coal; methane; low-pressure environment; CO, and H,; microbial community;
pore structure
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Table 1 Tested fundamental properties of coal samples
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Table 2 Preparation of trace element solutions
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Table 3 Characteristics of gas production of coal samples through microbial degradation under different experimental conditions
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Fig.2 Average volume fractions of gas components produced from various coal samples under different experimental conditions
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Fig.3 Curves showing the changes in the production of biogenic gas in fermentation flasks
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at phylum and genus levels
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Fig.7 Low-temperature liquid nitrogen adsorption-desorption curves of raw coal samples and coal samples subjected to microbial degradation
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Fig.9 Variation trends of the concentrations of calcium and magnesium ions in different coal samples
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