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Abstract: [Objective and Methods] Faults are identified as one of the most threatening geological structural factors
among hidden disaster-causing factors in coal mines. However, the 3D quantitative assessment of them remains challen-
ging. Considering that existing quantitative indicators fail to fully reflect fault morphologies and there is a lack of 3D
methods, this study proposed a calculational model for 3D fault complexity based on curvature analysis and fractal di-
mensions. This model improved the morphologies of traditional measurement volumes of fractal dimensions by employ-
ing the Delaunay tetrahedralization algorithm, thus effectively reducing the invalid values in calculating the 3D fractal
dimensions of faults. Moreover, the model modified fault parameters by introducing fault plane curvatures, thereby re-
taining the structural characteristics of faults. To validate its effectiveness, this model was applied to the faults revealed
in a coal mine in Shaanxi Province. Using this model, this study conducted a qualitative assessment of the complexity of
geological structures and examined the data on the spatial distributions of the historical water inrush points in the min-
ing face and roadways. [Results and Conclusions] Using this model, 75 partitioning intervals with nonzero statistics
were identified in the mine field. Calculations revealed that the average 3D fractal dimension of faults and 3D fault com-
plexity values integrated with Gaussian and mean curvatures were 0.9394, 1.136 2, and 1.219 9, respectively. Compared
to a single fractal dimension, the fault complexity integrated with curvatures enjoyed significant advantages in revealing
the differences in fault strikes and fault concentration zones. Based on the Pearson correlation coefficients calculated us-
ing the 3D fault complexity and the distance between sample points and water inrush points as two correlation indicators,
water inrush points can be categorized into two types: those in the mining face and those in roadways. For water inrush
points in the mining face, the average coefficients of their correlations with 3D fractal dimension of faults and 3D fault
complexity integrated with Gaussian and mean curvatures were 0.784 3, 0.838 6, and 0.907 2, respectively, while these
average coefficients were 0.771 8, 0.832 4, and 0.890 3, respectively, for water inrush points in roadways. These data in-
dicate that fault complexity is highly correlated with water inrush points in the mining face compared to water burst
points in roadways. In other words, the production activities in the mining face within the study area are more signific-
antly affected by faults. Additionally, the Pearson correlation coefficients all exceeded 0.77 regardless of the curvature
integrated, suggesting a strong correlation between the 3D fault complexity and the water hazard conditions of coal
mines. The qualitative assessment reveals that the overall structural complexity of the coal mine is relatively low and is
primarily affected by faults. The fault complexity values of the coal mine were determined at around 1, exceeding 2 in
very few zones. This result implies the overall low fault complexity of the coal mine despite local fault concentration,
aligning with the qualitative assessment results. The above methods validate the effectiveness of the proposed model,
which provides a new modeling approach for the calculation of 3D fault complexity.

Keywords: fault complexity; 3D quantitative analysis; curvature analysis; Delaunay tetrahedralization algorithm; Pear-
son correlation coefficient; water inrush point
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tetrahedralization algorithm
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