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Application of microseismic monitoring in the optimization of control strategy for
roofs composed of composite hard sandstone masses

ZHANG Yin', LI Jiajun', ZHAO Qian’, YANG Chenchen', LIU Jiaqi', ZHOU Yu'

(1. School of Mechanics & Engineering, Liaoning Technical University, Fuxin 123000, China;
2. Zhongtian Hechuang Energy Co., Ltd., Ordos 017010, China)

Abstract: [Objective] With a gradual increase in the coal mining depth in China, the movement of overlying thick and
hard rock layers exerts increasingly complex impacts on the mine pressure. [Methods] In the Ordos area, the overbur-
den of the mining face of most mines hosts composite hard sandstone masses, serving as key layers characterized by
considerable thicknesses, high hardness, and close proximity. [Results and Conclusions] As a result, the risks of mine
earthquakes and dynamic manifestation co-exist in the mining face. With the roof of mining facel11-3106 in a coal mine
within the Ordos mining area as the engineering background, this study investigated roofs composed of composite hard
sandstone masses. Based on the evolution of microseismic monitoring characteristics and using methods like theoretical
analysis and numerical simulation, this study investigated the breaking-induced fracture development in the roofs and ex-
plored the control measures for the roofs. The results indicate that as the mining face advanced, the overlying composite
hard sandstone masses broke in the zone with significant microseismic monitoring. The breaking positions can be identi-
fied based on the evolutionary patterns of microseismic monitoring characteristics. The high-density microseismic mon-

itoring zone in the mining face manifested high microseismic frequency and energy, accompanied by regional peak high-
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energy events. As mining face 11-3106 advanced to the first and second square states (i.e., the first advancing distance of

the mining face equals its length, and the second advancing distance of the mining face equals twice its length), the

breaking characteristics of the composite hard sandstone masses exhibited two to three small cycles and a large cycle,

with dynamic microseismic monitoring occurring along the strike of the mining face. The breaking span for deep-hole

pre-splitting blasting was optimized based on the evolutionary characteristics of microseismic monitoring, significantly

reducing microseismic monitoring in the air-return roadway and the mining influence range. The control measures for

the roof composed of composite hard sandstone masses were optimized based on the dynamic migration of composite

hard sandstone masses derived using the microseismic monitoring in the mining face. This study can serve as a refer-

ence for controlling the mining face roofs with similar overburden structures in the Ordos mining area.

Keywords: microseismic monitoring; composite hard sandstone mass; fracture regularity; mining stress; movement
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Table 1 Rock mechanical parameters
s ik BRUEE/m B kgm)  FMBE/GPa M BES/MPa /) PIRIRE/MPa
13 D 6 2550 19.2 0.23 10 38 5
12 eh 21 2550 20.1 0.24 6.6 30 4
11 i) 8 2 600 21.6 0.25 10 38 2.7
10 (e 11 2 580 15.3 0.26 6.6 35 2.8
9 s 13 2 600 216 0.25 6.7 38 2.7
8 igitievas 5 2580 153 0.26 6.5 35 2.7
7 MR 5 2550 19.2 0.23 10 38 5
6 Wl s 3 2 580 153 0.26 6.5 35 2.7
5 i) 12 2 600 21.6 0.25 5.5 38 3.12
4 (e 8 2 580 15.3 0.26 6.5 35 2.7
3 3- 1% 6 1 600 12 0.3 45 30 1.68
2 WS 9 2580 153 0.26 6.2 35 22
1 gl 23 2550 21.6 0.25 7.2 38 2.7
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