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Abstract: [Objective] Lithology identification lays the foundation for fine-scale reservoir evaluation. However, tradi-
tional identification methods generally utilize the interactive relationships between only 2—-3 logging parameters, suffer-

Wois B H#A: 2024-07-31; EMAHA: 2024-12-19

E&WHE: FRARBELETH 42104126, 42474177); ThE A IEHE EHTEE 430 H (2022DQ02-0301); LA BB TRIFH AR
T H(Q20211309)

F—1EH: W, 1986 4=, B, LR A, L, 8lEdZ, Wit4: S, E-mail: caiming@yangtzeu.edu.cn

SEEES: TAUT, 1963 484, B, WinTiA, i, #oR, AR, E-mail: zhangeglog@163.com

© Editorial Office of Coal Geology & Exploration. OA under CC BY-NC-ND


mailto:caiming@yangtzeu.edu.cn
mailto:zhangcglog@163.com
https://doi.org/10.12363/issn.1001-1986.24.07.0503
https://doi.org/10.12363/issn.1001-1986.24.07.0503
https://doi.org/10.12363/issn.1001-1986.24.07.0503
https://doi.org/10.12363/issn.1001-1986.24.07.0503
https://doi.org/10.12363/issn.1001-1986.24.07.0503
https://doi.org/10.12363/issn.1001-1986.24.07.0503

- 236 - MRS

ing from low utilization rates of logging information and low identification accuracy for strata with small differences in
logging responses. This seriously restricts the effects of old well reexamination. The efficient, intelligent CatBoost clas-
sification algorithm can fully mine the correlations between multi-source logging information and lithology. [Methods]
This study investigated the Jurassic sandstone and mudstone reservoirs in the Lunnan area, Xinjiang, China. Using five
logging parameters determined through sensitivity analysis, i.e., natural gamma-ray value, spontaneous potential, deep
and shallow resistivity ratio, sonic interval transit time, and density, this study developed an intelligent lithology identi-
fication model based on the CatBoost algorithm. The optimized model was employed to deal with actual logging data for
lithology identification, and its performance was evaluated using accuracy, precision, and recall and was then compared
with the lithology identification results of the random forest (RF) and k-nearest neighbors (KNN) algorithms. [Results
and Conclusions] The results indicate that the large-scale lithologies of the Jurassic strata in the Lunnan area include
mudstones, sandstones, and conglomerates, with complex fine-scale lithologies. In the identification of the fine-scale li-
thologies of the target reservoir, the intelligent lithology identification model, established using the CatBoost algorithm
and lithology-sensitive logging parameters, yielded an accuracy of 92.64%, significantly higher than that of the random
forest model (82.95%) and the KNN model (70.16%). This result demonstrates that the CatBoost model can effectively
address of the challenges of lithology identification in the study area. The results of this study will provide a scientific
basis for the review and further exploration and development of old wells in the Lunnan area. Besides, these results can

%53 %

serve as a valuable reference for research on methods for fine-scale identification of complex lithologies.

Keywords: logging; lithology identification; artificial intelligence (Al); CatBoost; gradient boosting algorithm
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Table 5 Accuracy, recall, and precision of different methods for lithology identification of cored wells in the Lunnan area %
g CatBoost FHHLARAR KNN
RS H GELIESS PE itk PE
Vet 89.39 84.29 81.82 73.97 77.27 80.95
WA BT S 80.00 75.00 70.00 63.64 76.67 60.53
b 93.13 98.19 85.41 97.07 76.39 97.80
Hedsie spileas 88.89 80.00 72.22 65.00 83.33 68.18
ghlres 95.83 92.00 87.50 63.64 95.83 46.00
TR 100.00 95.83 100.00 79.31 100.00 79.31
WRE 100.00 85.71 91.67 84.62 100.00 54.55
e 92.12 84.09 80.05
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