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砂泥岩地层岩性智能识别方法与应用

−以新疆轮南侏罗系岩层为例

蔡　明1,2，周庆文1,2，杨　聪3，陈　枫2,5，伍　东4，林　旺4，

章成广1,2,*，张远君1,2，苗雨欣1,2

(1. 油气资源与勘探技术教育部重点实验室(长江大学)，湖北 武汉 430100；2. 长江大学 地球物理与石油资源

学院，湖北 武汉 430100；3. 中钢集团武汉安全环保研究院有限公司，湖北 武汉 430081；4. 中国石油集团

工程技术研究院有限公司信息中心，北京 102206；5. 安徽省煤田地质局第三勘探队，安徽 宿州 234000)

摘要:  【目的】岩性识别是储层精细评价的基础，传统方法一般仅用 2~3 种测井参数的交互关系进

行岩性识别，测井信息利用率低，对于岩性测井响应差异小的地层岩性识别精度低，严重制约了老

井复查效果。高效的智能分类算法 CatBoost 可充分挖掘多源测井信息与岩性的关联。【方法】以新

疆轮南地区侏罗系砂泥岩储层为研究对象，通过敏感性分析选取自然伽马、自然电位、深浅电阻率

比值、声波时差和密度 5 个测井参数，构建基于 CatBoost 算法的岩性智能识别模型。利用优化的模

型处理实际井资料以进行地层岩性识别，通过准确率、精确率和召回率综合评估模型的岩性识别效

果，并对比分析了其与随机森林和 KNN 算法模型的识别效果。【结果和结论】结果表明：轮南侏罗

系大类岩性包括泥岩、砂岩和砾岩，细分岩性复杂；根据岩性敏感测井参数利用 CatBoost 算法建立

的岩性智能预测模型对目标储层细分岩性的识别准确率达 92.64%，显著高于随机森林模型的 82.95%

和 KNN 模型的 70.16%，证明该方法能有效解决研究区的岩性识别问题。研究成果不仅为轮南地区

老井复查和进一步勘探开发提供了科学依据，还为复杂岩性精细识别方法研究提供重要参考。

关　键　词：测井；岩性识别；人工智能；CatBoost；梯度提升算法
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An intelligent lithology identification method for sandstone and mudstone strata and its
applications: A case study of the Jurassic strata in the Lunnan area, Xinjiang, China
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Abstract:  [Objective] Lithology identification lays  the  foundation for  fine-scale reservoir  evaluation.  However,  tradi-
tional identification methods generally utilize the interactive relationships between only 2‒3 logging parameters, suffer-
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ing from low utilization rates of logging information and low identification accuracy for strata with small differences in
logging responses. This seriously restricts the effects of old well reexamination. The efficient, intelligent CatBoost clas-
sification algorithm can fully mine the correlations between multi-source logging information and lithology. [Methods]
This study investigated the Jurassic sandstone and mudstone reservoirs in the Lunnan area, Xinjiang, China. Using five
logging parameters  determined through sensitivity analysis,  i.e.,  natural  gamma-ray value,  spontaneous potential,  deep
and shallow resistivity ratio, sonic interval transit time, and density, this study developed an intelligent lithology identi-
fication model based on the CatBoost algorithm. The optimized model was employed to deal with actual logging data for
lithology identification, and its performance was evaluated using accuracy, precision, and recall and was then compared
with the lithology identification results of the random forest (RF) and k-nearest neighbors (KNN) algorithms. [Results
and Conclusions] The results  indicate that  the large-scale lithologies of the Jurassic strata in the Lunnan area include
mudstones, sandstones, and conglomerates, with complex fine-scale lithologies. In the identification of the fine-scale li-
thologies of the target reservoir, the intelligent lithology identification model, established using the CatBoost algorithm
and lithology-sensitive logging parameters, yielded an accuracy of 92.64%, significantly higher than that of the random
forest model (82.95%) and the KNN model (70.16%). This result demonstrates that the CatBoost model can effectively
address of the challenges of lithology identification in the study area. The results of this study will provide a scientific
basis for the review and further exploration and development of old wells in the Lunnan area. Besides, these results can
serve as a valuable reference for research on methods for fine-scale identification of complex lithologies.

Keywords: logging; lithology identification; artificial intelligence (AI); CatBoost; gradient boosting algorithm
 

随着油气勘探开发的不断发展，具有良好物性的油

气藏逐渐减少且油气产量下降[1-2]，许多老油田将目光

转移到已经开发过的老井上，期望寻找出新的潜力油气

层。潜力层的寻找依赖于测井综合解释，而岩性的准确

识别是测井综合解释中不可缺少的一环[3-5]。因此，如

何从测井数据中准确地获取岩性数据逐渐成为了测井

领域的研究热点。传统的岩性识别方法主要包括测井

交会图版法和成像测井方法[6-12]。交会图版法是通过

分析不同岩性之间的测井响应特征差异从而建立交会

图来进行岩性划分，但该方法难以充分利用测井曲线包

含的岩性信息，对于非常规油气藏，不同岩性成分地层

对应的测井响应相似，很难准确实现岩性分类[13]。例

如，新疆轮南地区侏罗系层位地层主要岩性包括泥岩、

粉砂质泥岩、粉砂岩、泥质粉砂岩、细砂岩等，这些岩

性地层的自然伽马、声波时差和电性测井曲线具有一

定的相似性，用交会图方法无法准确地确定各种岩性的

测井响应参数上下限。通过成像测井资料识别岩性虽

然比较直观且分辨率高，但成像测井成本昂贵，且大部

分老井只有常规测井资料，所以无法依靠成像资料完成

研究区的岩性岩相划分工作[14]。

近些年机器学习和人工智能技术得到了飞速发展，

研究人员开始将这些方法引入地质领域，期望充分挖掘

常规测井资料中隐藏的信息以改善岩性识别的精度和

效率[15-19]。在机器学习方法中，常用的随机森林算法训

练速度快、准确率高、抗过拟合能力较强且在训练结束

后可以比较各输入特征的重要性，但对于低维数据(测
井数据)分类准确率并不理想，容易出现很多相似的决

策树，掩盖真实结果，且对于模型参数也需要通过多次

尝试才能找到最优解，无法控制模型的内部运行，可解

释性较差[20-21]。K 最邻近值(K-nearest neighbor，KNN)

算法理论成熟，思想简单，当训练样本量大时准确率非

常高，但模型的建立需要大量的内存，且在岩性识别训

练过程中对于数据量较少的样本预测准确率低[22-23]。

基于梯度提升的机器学习算法可以很好地解决数据分

布不均衡的问题，即使数据集中存在缺失值和异常值对

训练模型的影响也不大，因此，该类算法成为了岩性识

别研究的焦点[24-27]；其中 CatBoost 算法是一种基于对

称决策树的梯度提升算法，相比于传统机器学习算法和

其他梯度提升算法而言，其具有如下明显的优势：有更

高的准确性和泛化能力；能够高效合理地处理类别型特

征、梯度偏差和预测偏移等问题；其决策树结构使模型

能够可视化，可根据输入层数据特征的重要性增强模型

的可解释性并显著降低过拟合发生的概率[28-30]。

目前 CatBoost 算法通常用于重大疾病预测和市场

营销分析，这 2 个领域内的数据通常异常值较多且数据

分布不均衡，而 CatBoost 模型可以自动处理类别型特

征，无需独热编码，且对于异常值和噪声数据具有鲁棒

性，超参数的调节也较为方便[31-32]。轮南地区的岩性分

布也十分不均衡，且存在扩径等导致的异常值。因此，

以该区常规测井曲线数据和取心资料为基础，对测井参

数进行敏感性分析，并利用过采样方法增加样本使数据

分布均衡，进而建立了基于 CatBoost 算法的岩性识别

模型，通过准确率、精确率和召回率 3 个指标来评估模

型的识别效果，以提升识别精度，为地层岩性准确高效

识别提供新的思路。 

1    CatBoost算法

CatBoost 算法属于 Boosting 算法系列，是一种基

于梯度提升决策树(gradient boosting decision trees，GB-
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Mi Mi xi
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DT) 的新型机器学习算法框架[33]。GBDT 算法是一种

用于回归和分类的算法，能够避免由于内部集成多个决

策树并累积多个决策树而导致单个决策树产生过度拟

合的问题。GBDT 算法在每个迭代步构建沿梯度最陡

方向降低损失的学习器，以弥补当前已构建模型的不足，

即利用梯度下降法进行优化[34]。但由于 GBDT 算法中

弱学习器之间存在依赖关系，难以并行训练数据；同时，

算法缺乏平滑性，学习得到的模型仍可能产生过拟合问

题。CatBoost 算法由 L. Prokhorenkova 等于 2017 年首

次提出[28]，使用对称树作为基学习器解决了传统 GB-
DT 算法的过拟合问题，其采用 Ordered Boosting 方法

获得梯度的无偏估计，以减轻梯度估计偏差的影响，从

而提高模型的泛化能力。使用伪码描述排序提升算法，

见表 1，CatBoost 算法对每一个样本 都会训练生成一

个单独的模型 ，模型 是由不包含样本 的训练集

训练得到的，使用 来得到关于样本的梯度估计。
  

表 1    排序提升算法[28]

Table 1    Sort boosting algorithm[28]

{(xk ,yk)}nk=1 I输入： ， ；

σ← random permutation of [1,n]

Mi← 0 for i = 1,2, · · · ,n
for t← 1 to I do

for i← 1 to n do
ri← yi −Mσ(i)−1(xi)

for i← 1 to n do
ΔM← LearnModel((x j,r j) : σ( j) ⩽ i)

Mi← Mi +ΔM
return Mn

；

；

　

　 ；

　

；

　 ；

 

同时 CatBoost 还具有自适应学习率，自适应学习

率可以帮助算法更好地控制每一轮迭代中弱学习器的

贡献，从而提高整个模型的精度。自适应学习率的计算

方法如下：

ηt =
1
√

t+1
(1)

αt =

t∑
i=1

ηi

t
(2)

上述分析表明，CatBoost 算法不需要过多训练，即

可获得较高的模型精度，并且不需要对超参数进行过多

的调优，降低了过拟合发生的概率。 

2    岩性测井响应特征分析
 

2.1    测井曲线标准化与岩心深度归位

在油气勘探中，不同的测井仪器、不同的测量条件

以及不同的数据处理方法都可能导致数据之间存在明

显差异。这些差异可能导致地层识别、储层评价等工

作的准确性下降。通过标准化处理，可以消除这些差异，

使数据更加准确可靠，从而提高后续处理的精度。常用

的测井曲线标准化一般有频率直方图法、均值校正法

和趋势面分析法。本文采用趋势面法对研究区的测井

曲线进行标准化处理。将多口井的标准层测井数据与

井的空间位置相结合，利用最小二乘法拟合出趋势面。

趋势面能在数据没有局部变化的情况下，反映测井数据

的变化规律。

本文统计了研究区内 58 口关键井测井曲线数据，

并选取侏罗系四油组地层 JⅣ砂岩中最为稳定的一段

约 10 m 厚地层为标准层。

以声波时差标准化为例，读取每口井相应标准层的

声波时差中值来进行趋势面的拟合，图 1 为声波时差拟

合出的趋势面，东北方向声波时差为低值，东南方向声

波时差为高值。声波时差趋势面拟合公式为：

ΔDT = 0.002 2X+0.765 9Y +8.29×10−9X2−
5.56×10−8XY +8.95×10−9Y2−1.775×106 (3)
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图 1    DT 值趋势面法拟合结果
Fig.1    The fitting result of DT by trend surface method

 

通过岩样密度与密度测井曲线相关对比法进行岩

心深度归位，目标地区 Y1 井岩心深度归位结果如图 2
所示。图 2 中第 5 道为岩心原深度范围：4 554.80~
4 567.70 m， 第 6 道 为 校 正 后 深 度 范 围 ： 4 557.11~
4 570.01 m，校正量：+2.311 m。 

2.2    研究区岩性类型分析

轮南地区位于塔克拉玛干沙漠北部边缘，构造上位

于塔北隆起中部偏东，是塔北隆起的一个二级构造单元，

称为轮南低凸起。该区侏罗系为河−湖沉积体系，该

层位自下而上分为 JⅣ、JⅢ、JⅡ、JⅠ共 4 个油层组，下

统对应于 JⅣ油层组，为辫状河三角洲沉积；中统对应

于 JⅢ和 JⅡ油层组；上统对应于 JⅠ油层组，为滨浅湖

沉积[35]。该区砂岩储层虽处于有利沉积相带，但成岩

作用类型较多，对储层物性的影响较为复杂。JⅠ、JⅡ、

JⅢ油层组主要以泥岩、粉砂岩、细砂岩为主，而 JⅣ油

层组岩性分布较为复杂，粉、细、中、粗、不等粒砂岩、

砾岩和砂砾岩等均有出现，给测井岩性分类带来了困难。
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本次研究共统计了 4 口井的取心资料，将其导入测

井资料处理专业软件 CIFLog 中并设置采样间隔为

0.100 m，统计每种岩性的样本数量，结果见表 2；其中，

粉砂岩数量最多，其次是泥岩，中砂岩数据量较少，将其

和粗砂岩归为一类称为中粗砂岩，砂砾岩、角砾岩和细

砾岩归为一类称为砾岩。
 
 

表 2    目的层位岩性类型统计结果
Table 2    Statistics of lithology types at the target horizon

岩石分类 样本数量 岩性编号

泥岩
泥岩 548 1

粉砂质泥岩 176 2

砂岩

粉砂岩 1 921 3

泥质粉砂岩 207 4

细砂岩 224 5

中砂岩 44
6

粗砂岩 171

砾岩
砂砾岩 80

7
角砾岩、细砾岩 82

  

2.3    岩性测井响应特征分析

通过对取心和测井资料的分析，选取了对岩性较为

敏感的自然伽马(GR)、自然电位(SP)、深浅电阻率比

值(RD/RXO)、声波时差(DT)、密度(DEN) 共 5 种测井

响应参数。在多井资料分析中为消除不同测量工具的

系统误差，本文对 GR 和 SP 曲线采取了单井归一化使

其不同井的 GR 和 SP 曲线具有统一的标准。标准化公

式如下：

ΔSP =
SP−SPmin

SPmax−SPmin
×100% (4)

ΔGR =
GR−GRmin

GRmax−GRmin
×100% (5)

将 4 口取心井的岩性数据合并，对泥岩、粉砂质泥

岩、粉砂岩、泥质粉砂岩、细砂岩、中粗砂岩和砾岩

7 种岩性(编号依次为 1~7) 进行箱型图分析，结果如

图 3 所示。由图 3a 中可知，含有泥质的岩性相对自然

伽马值都较高，且泥质含量越高的岩性相对自然伽马值

越高，而非泥质岩性的相对自然伽马较低且有一定的重

合。而细砂岩的相对 SP 和密度(图 3b 和图 3d) 明显高

于中粗砂岩和砾岩，且砾岩的值大于中粗砂岩。在图 3c
中砾岩的深浅电阻率比值(RD/RXO) 最低，而泥岩、粉

砂质泥岩和泥质粉砂岩的值有很大部分重叠且高于其

他岩性，粉砂岩、细砂岩和中粗砂岩的值也大致相同。

总体来说，不同岩性的各测井响应特征虽然有差异，但

存在一定程度上的重叠，尤其是泥岩、粉砂质泥岩、粉

砂岩和泥质粉砂岩很难直接通过箱型图来直接区分。

由图 3 可知，由于数据中存在异常值导致个别岩性

的测井参数响应区间较大，甚至超出了正常值，这对于

岩性识别模型的准确率明显不利。为了进一步统计有
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图 2    Y1 井岩心深度归位成果
Fig.2    Core depth calibration result of well Y1

 

1 2 3 4

岩性编号

相
对

 G
R

/%

(a) 相对自然伽马

5 6 7

60

70

40

20

0

80

90

60

40

20

0

相
对

 S
P

/%

1 2 3 4

岩性编号

(b) 相对自然电位

5 6 7

岩性编号

深浅电阻率比值

−3

岩性编号

密度

D
T/
(μ
s·
m

−1

岩性编号

声波时差

•  238  • 煤田地质与勘探 第 53 卷



价值的测井响应参数，将箱型图第 85 百分位和第 15 百

分位作为实际岩性响应范围的上下限，见表 3。 

3    岩性预测模型建立与实例分析
 

3.1    数据预处理

本文研究的数据源来自轮南地区 4 口取心井的测

井曲线和取心数据，在建立岩性识别模型前需要对测井

参数和取心数据进行预处理[20]。

(1) 异常值处理。根据表 2 所划定的不同岩性测井

响应特征对数据进行筛选。

(2) 数据集划分。将其中 3 口井按 8∶2 随机划分

为训练集和测试集，留一口井作为验证集。

(3) 数据标准化。由于不同测井特征值量纲和单位

都不同，需要对数据进行标准化。本文使用 Z-Score 标

准化可以将不同量级的数据转换为同一量级，先处理训

练集数据并保留其均值和标准差，再用训练集的均值和

标准差对测试集进行标准化。

x' =
x− x̄
σ

(6)

(4) 数据过采样。由于泥岩和粉砂岩的数据量比其

他 2 种岩性的数据量大很多，岩性识别模型可能会对数

据量较少的类识别效果不佳。针对这一问题，本文采

用 SMOTE (synthetic  minority  over-sampling technique)
算法对训练集数据进行过采样使数据分布均衡 [20]。

SMOTE 算法公式如下：

xnew = xi+ rand(0,1)× (x̂i− xi) (7)
 

3.2    基于 CatBoost算法的岩性智能预测模型建立

基于 CatBoost 算法的岩性智能识别模型建立流程

如图 4 所示。利用 SMOTE 算法对训练样本进行过采

样处理使少数类岩性样本与多数类岩性样本数量相同；

将新得到的训练样本集输入建立的 CatBoost 模型中进

行训练，并利用网格搜索和交叉验证(Grid SearchCV)
方法进行模型调优，优选对模型影响最大的 3 个参数进

行搜索：树深范围(1，10)，步长为 1；学习率(0.01、0.03、
0.06、0.10、0.15)；正则系数(1、4、9)，通过网格遍历后

确定 CatBoost 算法的最优参数组合：树的深度、学习率、

正则系数分别取 4、0.15 和 1，此时基于 CatBoost 算法
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图 3    轮南地区侏罗系取心岩性及测井参数箱型图
Fig.3    Box diagrams showing the lithologies and logging parameters

of the cores from Jurassic strata in the Lunnan area

 

表 3    轮南地区侏罗系取心井不同岩性地层的测井响应特征(15%~85%)
Table 3    Logging responses of varying lithologies of Jurassic strata in cored wells in the Lunnan area (15%‒85%)

岩性 相对GR/% 相对SP/% RD/RXO DEN/(g·cm−3) DT/(μs·m−1)

泥岩 38.9~54.8 39.7~66.4 0.719~1.286 2.268~2.436 256.138~323.829

粉砂质泥岩 37.1~53.0 36.0~76.3 0.730~1.206 2.283~2.508 238.757~300.568

粉砂岩 20.7~35.1 19.1~55.6 0.458~0.637 2.392~2.494 245.597~260.692

泥质粉砂岩 27.8~47.7 34.5~76.1 0.744~1.223 2.313~2.471 230.233~294.032

细砂岩 6.9~35.0 46.7~57.3 0.483~0.608 2.387~2.484 246.010~265.669

中粗砂岩 12.4~26.3 11.3~25.3 0.483~0.639 2.298~2.380 249.429~280.194

砾岩 7.2~30.7 26.0~44.3 0.435~0.487 2.372~2.415 244.268~255.932
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的岩性预测模型最优 ，对应的交叉验证准确率为

97.87%。同时该模型还给出了各特征参数的权重，见

表 4。
 
 

数据预处理

训练样本集 测试样本集

SMOTE 算法

新的训练样本集

模型评价

CatBoost 训练模型

CatBoost 分类模型

参数最优?

最优参数组合

Y

N

图 4    岩性智能识别流程
Fig.4    Flow chart of intelligent lithology identification

 
 
 

表 4    CatBoost模型的特征参数权重
Table 4    Weights of the characteristic parameter of the

CatBoost model

特征参数 权重/%

相对GR 13.25

相对SP 21.52

RD/RXO 23.19

DEN 20.02

DT 22.02
  

3.3    模型测试结果与对比分析

利用上述优选的参数和训练集对 CatBoost 算法进

行训练学习，并且与随机森林算法和 KNN 算法在测试

集上进行分类预测对比，从而评估模型的岩性识别效果。

图 5 为轮南地区不同模型岩性识别混淆矩阵。表 5 为

CatBoost、随机森林、KNN 这 3 种机器学习算法在测

试集上的岩性识别效果，随机森林算法和 KNN 算法对

岩性识别的准确率均低于 90%，而 CatBoost 算法的岩

性识别准确率为 92.12%，岩性识别效果最好。另外，

CatBoost 模型对于全部岩性的精确率和召回率都很高，

说明该模型对于轮南地区侏罗系层位的岩性识别效果

很好；但粉砂质泥岩的召回率较低，表明该模型还有进

一步改善的空间。

由表 5 可以看出，随机森林模型中泥质粉砂岩和粉

砂质泥岩的精确率和召回率都低于 80%，由随机森林

岩性识别混淆矩阵(图 5b) 可以看出这 2 种岩性主要是

被误判为泥岩和粉砂岩；该模型对于细砂岩的召回率很

低，有 36.36% 的细砂岩被误判为粉砂岩，中粗砂岩中

也有 17.24% 被识别为粉砂岩，说明随机森林岩性识别

模型只对于粉砂岩和砾岩有很好的区分效果。
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图 5    轮南地区不同模型岩性识别混淆矩阵
Fig.5    Confusion matrices of varying models for lithology

identification in the Lunnan area
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KNN 岩性识别模型对于粉砂质泥岩和泥质粉砂岩

的识别准确率同样不高(表 5)，且 KNN 模型对于粉砂

岩和泥岩精确率都低于 80%，说明该模型不能很好地

区分泥岩、粉砂质泥岩、粉砂岩、泥质粉砂岩 4 种岩性。

另外，KNN 岩性识别模型对细砂岩、中粗砂岩、砾岩的

召回率都很低，结合图 5c(KNN 岩性识别模型混淆矩

阵)可以看出，这 3 种岩性主要被误判为粉砂岩。 

3.4    应用实例分析

利用上述建立的 3 种模型分别对轮南地区 X1 井

4 455~4 495 m 井段进行岩性识别，结果如图 6 所示，其

中第 1 道为 GR 和 SP 曲线，第 3 道为深、中、浅电阻率

曲线，第 4 道为 DT 和 DEN 曲线，第 5−第 8 道分别为

取心岩性、CatBoost 模型预测岩性、随机森林模型预测

岩性和 KNN 模型预测岩性。由图 6 可知：X1 井取心

层段由上往下第一段 4 456.45~4 457.66 m 为泥岩，Cat-
Boost、随机森林、 KNN 都识别为泥岩 ； 4  457.66~
4 458.09 m 为粉砂质泥岩，随机森林和 KNN 识别为泥

岩 ， 只 有 CatBoost 识 别 为 粉 砂 质 泥 岩 ； 4  458.09~
4 459.07 m 是粉砂岩，CatBoost 识别为粉砂岩而随机森

林和 KNN 则识别为顶端小段泥岩，底端为泥质粉砂岩；

4 459.08~4 459.49 m 为粉砂质泥岩，3 种岩性识别模型

均判断正确；4 460.20~4 460.77 m 为粉砂质泥岩，Cat-
Boost 和 KNN 识别正确，只有随机森林误判为粉砂岩；

4 460.79~4 464.61 m 为粉砂岩，CatBoost 模型识别最为

准确，KNN 和随机森林模型识别该段时都夹杂了其他

岩性效果不理想；4 469.96~4 472.73 m 为细砂岩，3 种

算法都准确识别，但从测井曲线来看 4 468~4 472.73 m
都为细砂岩，而随机森林和 KNN 算法将该段顶部都识

别为了粉砂岩；在 4 472.73~4 477.73 m 井段，CatBoost
和随机森林的预测岩性与取心岩性相同，而 KNN 算法

则是将粉砂岩预测成了泥岩和粉砂质泥岩；4 485.31~
4 485.93 m 井段为粉砂岩，KNN 和随机森林模型识别

为上部泥岩，底端为粉砂质泥岩，CatBoost 算法识别为

粉砂岩；4 486.85~4 491.02 m 井段为粉砂岩，CatBoost

岩性识别模型预测准确，而随机森林岩性识别模型和

KNN 岩性识别模型则将上部识别为泥质粉砂岩。整体

而言，CatBoost、随机森林、KNN 3 种模型岩性识别准

确率分别为 92.64%、82.95%、70.16%。

上述分析表明，在岩性识别结果中，随机森林和

KNN 岩性识别模型对粉砂岩的识别效果不好，容易将

其识别为粉砂质泥岩和泥质粉砂岩。CatBoost 模型预

测的岩性与取心岩性的符合率最高，但在岩性的过渡带

岩性识别精度相对较低。
 

 

表 5    轮南地区取心井不同方法的岩性识别准确率、召回率和精确率
Table 5    Accuracy, recall, and precision of different methods for lithology identification of cored wells in the Lunnan area %　

岩性
CatBoost 随机森林 KNN

精确率 召回率 精确率 召回率 精确率 召回率

泥岩 89.39 84.29 81.82 73.97 77.27 80.95

粉砂质泥岩 80.00 75.00 70.00 63.64 76.67 60.53

粉砂岩 93.13 98.19 85.41 97.07 76.39 97.80

泥质粉砂岩 88.89 80.00 72.22 65.00 83.33 68.18

细砂岩 95.83 92.00 87.50 63.64 95.83 46.00

中粗砂岩 100.00 95.83 100.00 79.31 100.00 79.31

砾岩 100.00 85.71 91.67 84.62 100.00 54.55

准确率 92.12 84.09 80.05
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Fig.6    Lithology identification results of well X1 (4 455‒4 495 m)
in the Lunnan area derived using by different algorithms
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4    结 论

(1) 岩心分析表明，轮南地区侏罗系细分岩性主要

包括泥岩、粉砂质泥岩、粉砂岩、泥质粉砂岩、细砂岩、

中粗砂岩和砾岩。这些岩性测井响应差异小，难以通过

传统的方法来精确地划分。

(2) 通过敏感性分析提炼了岩性敏感测井参数，构

建了基于岩性敏感参数和高效分类算法 CatBoost 的岩

性智能识别模型，并应用于新井目标储层岩性识别。结

果表明：新建的 CatBoost 模型细分岩性识别准确率达

到 92.64%，显著高于随机森林模型的 82.95% 和 KNN
模型的 70.16%，证实了该岩性智能识别模型的适用性

与智能模型构建方案的可行性。

(3) 构建的 CatBoost 岩性智能识别模型对于粉砂

岩、细砂岩、中粗砂岩和砾岩的识别效果相对最好，准

确率高达 93% 以上；粉砂岩和细砂岩储层是该地区的

主要含油储层；因此，可以在分区域分层构建孔渗饱和

模型的基础上再根据岩性精细识别结果进一步细化模

型，进而提高储层有效性和含油性评价结果的精度，为

优化老井复查开发方案及提高采收率奠定基础。

(4) 3 种算法模型对于泥质粉砂岩和粉砂质泥岩的

预测精度均较低，常与粉砂岩混淆。后续可考虑先通

过 GR、SP 和 CAL 曲线进行泥岩和砂岩的大类划分，

再通过 DT、DEN 和 RD/RXO 等曲线进行细分类别划

分，以进一步提高岩性划分的精度。

致谢：感谢中国石油集团有限公司给予测试数据支

持以及匿名审稿人提供建设性修改意见。 

符号注释：

ΔDT
GRmin GRmax

ΔGR

M0

Mi Mn

Mσ(i)−1 ΔM

SPmin SPmax

ΔSP

x xi xnew x′

x̄ x̂i xi X

Xi Y yi

Mσ(i)−1(Xi) ri {(xk,yk)}nk=1

(xσ1,yσ1), (xσ2,yσ2), · · · ,

CAL 为井径，m；CNL 为补偿中子测井，%；DEN 为

密度测井，g/cm3；DT 为声波时差，μs/m； 为经过校

正后的值，μs/m； 为纯砂岩段的 GR 值，API；
为纯泥岩段的 GR 值，API； 为相对 GR 值，%；RD、

RM、RXO 分别为深、中、浅电阻率测井，Ω‧m；I 为树

的数量；j 为样本序号；k 为样本序号；下标 max、min 分

别为相应测井数值的最大值、最小值； 为初始化模

型； 为样本对应的单个模型； 为最终输出模型；

为第 σ(i)−1 个模型； 为模型的增量更新值；n
为样本总数； 为纯泥岩段的 SP 值，mV； 为纯

砂岩段的 SP 值，mV； 为相对 SP 值，%；t 为迭代次

数； 为原始数据； 为原始样本； 为新样本点； 为

标准化后的数据； 为均值； 为 的随机邻近点； 为井

位横坐标，m； 为样本特征值； 为井位纵坐标，m； 为

得出的值，即残差值，用 表示； 为

训 练 样 本 ， 按 照 顺 序 排 列 为

(xσn,yσn) αt ηt

σ

； 为前 t 轮迭代的平均学习率； 为第 t 轮迭

代的学习率； 为标准差。
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