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摘要:  【目的】煤矿井下普遍存在低照度、弱纹理和结构化的特征退化场景，导致视觉 SLAM(visu-

al simultaneous localization and mapping) 系统面临有效特征不足或误匹配率高的问题，严重制约了其

定位的准确性和鲁棒性。【方法】提出一种基于边缘感知增强的视觉 SLAM 方法。首先，构建了边

缘感知约束的低光图像增强模块。通过自适应尺度的梯度域引导滤波器优化 Retinex 算法，以获得纹

理清晰光照均匀的图像，从而显著提升了在低光照和不均匀光照条件下特征提取性能。其次，在视

觉里程计中构建了边缘感知增强的特征提取和匹配模块，通过点线特征融合策略有效增强了弱纹理

和结构化场景中特征的可检测性和匹配准确性。具体使用边缘绘制线特征提取算法(edge drawing

lines, EDLines) 提取线特征，定向 FAST 和旋转 BRIEF 点特征提取算法(oriented fast and rotated brief,

ORB) 提取点特征，并利用基于网格运动统计(grid-based motion statistics, GMS) 和比值测试匹配算法

进行精确匹配。最后，将该方法与 ORB-SLAM2、ORB-SLAM3 在 TUM 数据集和煤矿井下实景数据

集上进行了全面实验验证，涵盖图像增强、特征匹配和定位等多个环节。【结果和结论】结果表明：

(1) 在 TUM 数据集上的测试结果显示，所提方法与 ORB-SLAM2 相比，绝对轨迹误差、相对轨迹误

差的均方根误差分别降低了 4%~38.46%、8.62%~50%；与 ORB-SLAM3 相比，绝对轨迹误差、相对

轨迹误差的均方根误差分别降低了 0~61.68%、3.63%~47.05%。(2) 在煤矿井下实景实验中，所提方

法的定位轨迹更接近于相机运动参考轨迹。(3) 有效提高了视觉 SLAM 在煤矿井下特征退化场景中的

准确性和鲁棒性，为视觉 SLAM 技术在煤矿井下的应用提供了技术解决方案。研究面向井下特征退

化场景的视觉 SLAM 方法，对于推动煤矿井下移动式装备机器人化具有重要意义。
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An edge awareness-enhanced visual SLAM method for underground coal mines
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Abstract: [Objective] Underground coal mines commonly exhibit low illuminance, weak textures, and structuralization-
induced feature degradation. These scenes lead to challenges of insufficient effective features and high mismatch rates to
the visual simultaneous localization and mapping (SLAM) system, severely compromising its localization accuracy and
robustness. [Methods] This  study  proposed  an  edge  awareness-enhanced  visual  SLAM method.  First,  an  edge-aware-
ness  constrained  low-illuminance  image  enhancement  module  was  developed.  Specifically,  images  with  clear  textures
and  uniform  illumination  were  obtained  using  the  Retinex  algorithm  optimized  using  an  adaptive  gradient-domain
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guided  filter.  This  significantly  improved  feature  extraction  performance  under  low  and  uneven  lighting  conditions.
Second, an edge awareness-enhanced feature extraction and matching module was introduced into the visual odometry.
A point and line feature fusion strategy was employed to enhance the detectability and matching accuracy of weak tex-
tures  and  features  in  structured  scenes.  Specifically,  line  features  were  extracted  using  the  EDLines  algorithm,  while
point features were extracted using the Oriented FAST and Rotated BRIEF (ORB) algorithms. Such feature extraction
was followed by precise feature matching achieved using grid-based motion statistics (GMS) and ratio test matching al-
gorithms. Finally, the proposed method, along with the ORB-SLAM2 and ORB-SLAM3 algorithms, was comprehens-
ively verified on the TUM dataset and the dataset of the actual underground coal mine scenes, covering multiple aspects
such as image enhancement, feature matching, and localization. [Results and Conclusions] The results indicate that on
the TUM dataset, the proposed method reduced the root mean square errors (RMSEs) of absolute and relative trajectory
errors by 4%‒38.46% and 8.62%‒50%, respectively compared to ORB-SLAM2 and reduced by 0‒61.68% and 3.63%‒
47.05%, respectively compared to ORB-SLAM3. Experiments on the actual underground coal mine scenes revealed that
the  location  trajectories  of  the  proposed  method  were  aligned  with  the  reference  trajectory  of  camera  motion  more
closely. Furthermore, the proposed method effectively enhanced the accuracy and robustness of the visual SLAM sys-
tem in  the  feature  degradation  scene  in  underground  coal  mines,  providing  a  technical  solution  for  its  applications  in
such  settings.  Research  on  visual  SLAM  methods  tailored  for  feature  degradation  scenes  in  underground  coal  mines
holds great significance for advancing the roboticization of mobile equipment used in coal mines.

Keywords: visual SLAM; feature degradation; edge awareness; image enhancement; point and line feature fusion; TUM
dataset

 

煤炭是我国重要的工业原料和战略资源[1]。随着

煤矿产业向数字化、无人化和智能化的转型，对复杂井

下环境中稳定作业的移动机器人的需求日益增长[2]。

同步定位与建图(simultaneous localization and mapping,
SLAM) 技术[3] 是移动机器人自主导航的基础，为井下

移动机器人、无人驾驶和数字孪生等提供技术支持[4-5]。

然而，煤矿井下普遍存在低照度、弱纹理和结构化的特

征退化区域，严重制约了 SLAM 系统的准确性和鲁棒

性[6]。因此，研究适用于井下特征退化场景的 SLAM
技术已成为煤矿机器人领域的热点问题[6-8]。

SLAM 是指移动机器人在未知环境中，利用所搭

载的传感器获取并跟踪场景特征，进而实时估计自身位

姿并构建环境地图 [3]，可分为激光 SLAM 和视觉

SLAM。激光 SLAM 依靠点云数据描述场景几何结构，

但在井下结构化区域，如狭长的巷道等，点云数据可区

分性不足，易导致 SLAM 系统定位漂移甚至失败 [9]。

视觉 SLAM 通过图像纹理描述场景特征，但在井下低

光照与不均匀光照、弱纹理与结构化的区域中，图像纹

理辨识度低、有效特征点数量不足或特征描述子高度

相似，导致缺乏足够的可辨识有效特征，严重影响了

SLAM 系统的性能和鲁棒性[6]。近年来，随着计算机视

觉技术的快速发展，视觉 SLAM 展现出广阔的改进空

间和灵活的适应性，其在煤矿井下环境中的应用受到越

来越多的关注[6,10]。

为解决煤矿井下低照度环境引起的特征退化问题，

常用的方法是采用图像增强技术提升低照度区域亮度

和纹理细节。基于灰度映射的方法通过特定的映射函

数逐像素调整图像亮度，原理简单、易于实现，但由于

未考虑亮度分布的相关性，易出现色彩失真、细节异常

和噪声放大等现象[11-12]。基于 Retinex 理论的方法通

过估计和调整图像的光照分量来改善低光照区域亮度，

其性能依赖于光照估计的准确性[13]。经典 Retinex 算

法假设光照均匀变化，采用各向同性的高斯滤波器估计

光照，但在煤矿井下局部点光源等照明条件下，图像在

光照突变区域可能产生光晕和伪影，不利于 SLAM 系

统后续的特征提取与匹配。为此，研究者们尝试使用各

向异性的滤波器来估计光照[14-15]，并取得了一定的进展。

但是，这类方法在 SLAM 场景中尚未得到深入应用。

为解决煤矿井下弱纹理和结构化引起的特征退化

问题，一些研究者在传统点特征[16-17] 的基础上，引入更

高维的线特征以增强对场景的描述能力[18-19]。煤矿井

下的线型场景如巷道、轨道和液压支架等为线特征的

提取提供了有利条件。然而，LSD(line segment detect-
or)[20] 线特征提取算法计算复杂，抗噪能力有限，会在煤

岩壁等区域产生大量不稳定的短线段，不利于视觉里程

计的特征匹配[21-22]。为提升结构化区域特征匹配的准

确性，一些研究者改进了特征提取和匹配算法[23-24]，提

高了特征匹配的精度。

此外，基于深度学习的方法在图像增强、特征提取

与匹配领域展现出巨大的潜力[25-26]，但其性能依赖于高

质量和多样化的大规模图像数据集，并且对计算资源要

求较高，这限制了其在煤矿井下资源受限环境中的应用。

综上所述，为增强视觉 SLAM 在煤矿井下特征退

化场景中的性能和鲁棒性，关键在于提升图像特征的可
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检测性和匹配的准确性。基于此，提出了一种基于边缘

感知增强的煤矿井下视觉 SLAM 方法。首先，通过构

建具有边缘感知约束的自适应图像增强模块，提升低照

度场景中特征的可检测性。其次，改进视觉里程计，通

过融合边缘感知增强的线特征并优化点线特征精匹配

策略，提升其在弱纹理和结构化场景中的性能。最后，

在 TUM 数据集和煤矿井下实景数据集上验证了所提

出方法的有效性。目的是提升视觉感知技术在煤矿智

能化过程中的重要作用，推动面向特征退化场景的视

觉 SLAM 技术在井下移动机器人领域的应用价值[2]。 

1    总体方案

基于边缘感知增强的煤矿井下视觉 SLAM 方法总

体分为图像增强、特征提取与匹配、位姿估计和后端优

化 4 个阶段，如图 1 所示。
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图 1    总体方案
Fig.1    General scheme

 

(1) 图像增强：采用自适应尺度的梯度域引导滤波

器对 Retinex 算法进行改进，构建边缘感知约束的自适

应图像增强算法，对井下低光照和不均匀光照环境下的

图像进行增强预处理，获得纹理清晰、光照均匀的图像，

提高特征的可检测性。

(2) 特征提取与匹配：同时提取 ORB 点特征和 ED-
Lines 线特征，并通过 GMS 和比值测试匹配算法剔除

错误匹配，以提高井下弱纹理和结构化场景中特征的可

辨识性和区分能力，为相机位姿估计提供更有效的匹配

特征坐标信息。

(3) 位姿估计：根据匹配特征的三维坐标构建点线

特征联合重投影误差，估计相机位姿。

(4) 后端优化：采用与 ORB-SLAM2[27] 相同的后端

优化策略，对位姿信息进行非线性优化，进而获得更精

准的定位结果。 

2    图像增强

在煤矿井下，由于照明灯和车灯等局部点光源的影

响，图像常呈现低光照或非均匀光照，并伴有显著噪声。

为改进 Retinex 算法对非均匀低光图像的增强效果，提

出了一种基于边缘感知约束的自适应图像增强方法。

通过构建自适应尺度梯度域引导滤波，并将其作为 Ret-
inex 的环绕函数，能够更准确地估计非均匀的光照分量，

有效缓解过增强、光晕效应和伪影等问题。此外，对反

射分量采用引导滤波去除噪声后进行细节提升，进一步

增强了图像纹理特征。 

2.1    光照估计

I

为避免图像增强过程中出现色彩失真，首先将 RGB
图像转换至 HSI 色彩空间，仅对亮度通道图像 进行增

强处理。Retinex 理论[28] 将图像分解为光照分量和反

射分量的乘积，通过估计和调整光照分量来改善低光照

区域亮度。因此光照估计的准确性是图像增强性能的

关键。为了提高对低照度和非均匀光照条件的适应性，

构建了自适应梯度域引导滤波器，通过图像尺寸、光照

和纹理动态调整滤波半径和平滑因子，显著提升了对非

均匀低照度图像光照估计的精度。

I

L

对亮度通道图像 采用自适应尺度的梯度域引导滤

波进行光照估计，得到光照分量 ：

L(x,y) =
N∑

i=1

γ fg(I(x,y), I(x,y),ri) (1)
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N (m,n)

ri

其中，尺度数 由输入图像的尺寸 确定，各尺

度数参数 的计算如下：

r1 =
min(m,n)

2N

rN =
max(m,n)

2

ri =

[
r1+ (i−1) · rN − r1

N −1

]
, i = 2,3, · · · ,N −1

(2)

G

q

Retinex 算法采用各向同性的高斯滤波器来估计光

照，在处理光照不均匀的煤矿井下图像时，在亮度突变

区域会出现梯度反转和光晕，不利于后续视觉里程计的

特征提取与匹配。引导滤波[29] 假设引导图像 与滤波

后结果图像 存在局部线性关系：

qi = akGi+bk, ∀i ∈ wk (3)

qi Gi由于 和 具有一致的梯度方向，有效避免了因梯

度反转而产生的边缘伪影。

E(ak,bk)

qi Ii

构建目标函数 ，表示在每个局部窗口内最

小化滤波结果图像 和原图像 之间的差，从而在整体

上保持增强图像的原始特征：

E(ak,bk) =
∑
i∈wk

[(akGi+bk − Ii)2+εa2
k] (4)

ε其中，惩罚系数 作为平滑因子，在所有邻域窗口

相同，忽略了图像中不同区域的差异，在光照和纹理变

化不均匀的图像中会出现过度平滑或滤波不足。

I

梯度域引导滤波[30] 引入边缘感知约束动态调整惩

罚系数，以实现对不同区域的自适应滤波，使用亮度通

道图像 作为引导图像，得到目标函数：

E(ak,bk) =
∑
i∈wk

[
(akIi+bk − Ii)2+

ε

Γ̂G(k)
(ak −σk)

2

]
(5)

Γ̂G(k) σk其中， 、 为边缘感知约束项：

Γ̂G(k) =
1
M

M∑
i=1

Ψ (k)+α
Ψ (i)+α

(6)

σk = 1− 1

1+ exp
(

4
Ψu(k)−Ψmin(k)

)
[Ψ (k)−Ψu(k)]

(7)

 

2.2    光照校正与纹理提升

L

K

通过式(1) 得到光照分量 后，根据 Retinex 理论，

可计算得到反射分量 ：

K(x,y) = exp[ln I(x,y)− ln L(x,y)] (8)

L

L′
采用直方图均衡化对光照分量 进行灰度校正，获

得了亮度分布更加均衡的光照分量 。

K

K′

为避免在纹理增强时噪声被放大，首先使用具有保

边平滑特性的引导滤波去除反射分量 中的噪声，然后

采用梯度差增强[31] 方法提升纹理特征，得到反射分量

。 

2.3    色彩恢复

L′

K′ I′
根据 Retinex 理论，融合优化后的光照分量 和反

射分量 ，得到增强后的亮度通道图像 ：

I′(x,y) = exp[ln K′(x,y)+ ln L′(x,y)] (9)

I ′

H S

增强后的亮度通道图像 仍是灰度图像，将其与原

色调通道图像 、饱和度通道图像 融合，得到增强后

的 RGB 图像。 

3    特征提取与匹配

视觉里程计通过匹配相邻关键帧中的特征点估计

相机位姿，因此特征提取与匹配是影响其定位性能的关

键环节。为提高煤矿井下弱纹理和结构化场景中特征

提取与匹配的性能，提出了基于边缘感知增强的特征提

取与匹配方法，通过点线特征融合和特征精匹配策略，

有效改善了弱纹理场景中特征不足和结构化场景中误

匹配率高的问题。 

3.1    点特征提取与匹配

首先采用 ORB 算法[17] 快速采集大量特征点，为后

续的特征匹配提供充足的候选集。然后通过汉明距离

度量相邻关键帧间特征点描述子的相似性，初步筛选匹

配对。最后采用 GMS[23] 算法筛除错误和重复匹配，完

成点特征精匹配。

GMS 算法对图像进行网格化，基于运动一致性原

则，运用统计方法计算匹配点在检测邻域内的支持度，

从而从粗匹配中快速识别正确匹配，如图 2 所示。在纹

理重复的场景中，GMS 算法能够显著提升视角变换的

图像帧间特征匹配的准确性。
 
 

i1 i2 i3

i4 i5 i6

i7 i8 i9

j1 j2 j3

j4 j5 j6

j7 j8 j9

图 2    GMS 网格匹配
Fig.2    GMS-based griding and point matching

  

3.2    线特征提取与匹配

采用 EDLines 算法[32] 提取线特征，通过汉明距离

进行粗匹配，采用比值测试匹配算法[17] 进行精匹配。

EDLines 算法是一种基于边缘特征的线特征提取

算法，相较于 LSD 线特征，其计算效率和抗噪性能显著

提升，能够在连续多帧图像中提取出稳定的长线段，为

后续特征匹配提供了可靠的基础。

比值测试匹配算法是一种高效的特征匹配方法，它

通过计算特征匹配对之间的最近邻和次近邻距离比，并

结合线特征间的相似度关系来剔除错误匹配：
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
δ = δt,

h1

h2
< β

δ = δf ,
h1

h2
> β

(10)

 

4    位姿估计

R t

通过匹配特征的二维坐标与深度图像得到特征三

维信息，采用 PnP 算法[33] 估计相机位姿。相机位姿由

旋转矩阵 和平移矩阵 描述其在世界坐标系中的位置

和方向。构建并优化点线特征联合重投影误差，得到相

机位姿。 

4.1    点特征重投影误差

F Pci F +1 P′ci
计算 帧中点特征 在 帧中的投影 ：

P′ci
= C · (R ·Pwi

+ t) (11)

Pci F +1 P′ci
随后计算 在第 帧中的匹配点与投影点

的差，作为点特征重投影误差，如图 3 所示。
  

P
c
i

P
c
i

ξ point
P
c
i

P
w
i

F F+1

′

图 3    点特征重投影误差
Fig.3    Reprojection error of a point feature

 

n ξpoint个点特征的重投影误差 表示为：

ξpoint =
1
2

n∑
i=1

∥∥∥Pci
−P′ci

∥∥∥2

2
(12)

 

4.2    线特征重投影误差

F F +1 p̃i

q̃i F +1 pdi
qdi

d1 d2 D

将 帧中线段的两端点投影到 帧，得到端点 、

，计算它们到 帧中匹配线段所在直线 的距

离 、 和线性参数 ：

d1 = E2
pl(pdi
,D) = DTpdi

,

d2 = E2
pl(qdi
,D) = DTqdi

,

D =
ph

di
×qh

di∣∣∣∣ph
di
×qh

di

∣∣∣∣
(13)

d1 d2对 、 加权求和，得到线特征重投影误差，如图 4
所示。

n ξline个线特征的重投影误差 表示为：

ξline =

n∑
i=1

(E2
pl(pdi
,D)+E2

pl(qdi
,D)) (14)

 

4.3    点线特征联合重投影误差

ξtotal构建点线特征联合重投影误差 ：

ξtotal = argmin
R,t

(ξpoint+ ξline) (15)

通过高斯牛顿法等得到当前帧的最优相机位姿。 

5    实验结果与分析

使用 TUM 数据集和煤矿井下实景数据集对所提

出的方法进行了全面的实验评估。实验内容涵盖图像

增强、特征匹配和定位等关键环节。 

5.1    实验环境与性能评估指标

1) 实验环境与实验数据

实验在 Ubuntu 18.04-x64bit 操作系统上进行，使用

的 CPU 型号为 Intel(R) Core(TM) i9-12900H 2.50 GHz，
内存为 16 GB，编程语言为 C++。

TUM 数据集[34] 是视觉 SLAM 领域中广泛认可的

标准数据集，包含多种场景的视频序列及其对应的相机

真实运动轨迹。此外，在西安科技大学煤炭主体专业综

合实验实训中心使用 Kinect V1 相机采集了多组实景

数据，涵盖轨道巷、综采工作面、中央水泵房和中央变

电所等主要场景。

2) 性能评估指标

为客观评估图像增强实验的有效性，采用图像熵、

能量梯度、方差作为实验评估指标。

E(oi)图像熵 反映图像信息量和细节丰富程度：

E(oi) = −
A−1∑
i=0

oilb(oi) (16)

F(x,y)能量梯度函数 反映图像的清晰度：

F(x,y) =
∑

x

∑
y

{[ f (x+1,y)− f (x,y)]2+

[ f (x,y+1)− f (x,y)]2}
(17)

V(x,y)方差函数 表示图像灰度分布的离散程度：

V(x,y) =
∑

x

∑
y


 f (x,y)− 1

Ms

∑
x

∑
y

f (x,y)


2
 (18)

为了客观评估视觉定位实验的精度，使用绝对轨迹

误差(absolute trajectory error, ATE) 和相对轨迹误差(re-
lative pose error, RPE) 作为实验评估指标[34]。

EAT

绝对轨迹误差通过比较定位轨迹与相机真实运动

轨迹之间的绝对距离来评估全局一致性。绝对轨迹误

差 定义为：

EAT = Q−1
i UPi (19)

 

pd
i

pi

d
1

d
1

qd
i

~

qi
~

′ d
2d

2
′

图 4    线特征重投影误差
Fig.4    Reprojection error of a line feature
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Δ
ERP

相对轨迹误差通过测量固定时间间隔 内位姿变

化量的差值来评估系统的漂移量。相对轨迹误差

定义为：

ERP = (Q−1
i Qi+Δ)−1(P−1

i Pi+Δ)−1 (20)
 

5.2    图像增强与特征匹配实验

在煤矿井下实景数据集中选择具有低光照和弱纹

理特征的图像序列 L1、L2，非均匀光照和弱纹理特征

的图像序列 L3，以及弱纹理和结构化特征的图像序列

L4 进行实验。 

5.2.1    图像增强

对比表 1 中图像增强前后的客观指标可知，增强后

图像的客观指标均显著提升，表明所提出的图像增强方

法能够有效提升低光照和非均匀光照图像的清晰度，并

增强图像中的细节。
 
 

表 1    图像增强前后客观指标
Table 1    Values of objective indicators before and after image

enhancement

序列 图像熵 能量梯度/108 方差/108

L1
原图 6.30 4.05 5.27

增强后 7.25 115.89 10.4

L2
原图 5.89 6.54 3.74

增强后 7.17 299.17 9.46

L3
原图 5.66 4.36 3.56

增强后 7.13 109.96 11.32
 

图 5 所示结果表明，增强后图像的亮度和细节均得

到显著改善，有效增强了退化特征的可检测性。在 L3
序列所示非均匀低光图像中，光照极低区域(如红色矩

形框所示)的亮度得到了显著提升，且在光照变化区域

未观察到明显的光晕和伪影。这得益于自适应梯度域

引导滤波对光照和纹理的局部感知能力。
 
 

序列 图像增强前 图像增强后

L1

L2

L3

图 5    图像增强前后对比
Fig.5    Comparison images before and after enhancement

  

5.2.2    特征匹配实验

O

图 6 为图像点线特征匹配对比结果。其中，对比方

法(“ORB+汉明距离匹配”和“EDLines+汉明距离匹

配”)在弱纹理和结构化场景中，存在较多杂乱的匹配线

段，表明存在大量错误匹配。而本文方法匹配线段方向

基本一致，说明能有效筛除错误匹配，匹配精度更高。

图 7 为图像增强前后的特征匹配实验结果，图 8 为图像

通过已知的单应性变换 后的特征匹配实验结果。与

原图像相比，增强后的图像能够显著提升退化区域特征

点的可检测性和匹配准确率。由图 8 结果可知，本文方

法特征匹配精度平均提升 2.37%。 

5.3    视觉定位实验

为了检验本文方法在视觉 SLAM 定位任务中的性

能，在 TUM 数据集中选取了 3 组具有弱纹理和结构化
 

L2

L3

L4

每帧耗时/s 4×10−3 1.1×10−4 1.3×10−4 9×10−5

(a) 点特征匹配 (b) 线特征匹配

点特征 线特征 特征匹配对

序列 ORB+汉明距离匹配
ORB+GMS匹配

(本文方法)
EDLines+汉明距离匹配

EDLines+比值测试匹配
(本文方法)

图 6    点线特征匹配对比
Fig.6    Comparison of point and line feature matching results using varying methods
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特征的序列和 5 组具有不同纹理特征的序列进行定位

实验，并与 ORB-SLAM2 和 ORB-SLAM3[35] 进行对比

分析。考虑到 SLAM 采用多线程架构，线程调度和执

行顺序的随机性可能导致实验结果波动，因此每个序列

执行 10 次独立实验，定量分析结果时取其平均值，定性

分析时则选取其最佳轨迹误差图。 

5.3.1    TUM 数据集定位实验

1)TUM 数据集定量分析实验

TUM 数据集定量分析实验结果见表 2 和表 3。
由结果可知，在绝对轨迹误差、相对轨迹误差的均

方根误差和平均值指标中，本文方法均优于对比方法。

在 8 个 TUM 序列中，相较于 ORB-SLAM2，本文方法

绝对轨迹误差的均方根误差降低了 4%~38.46%，相对

轨迹误差的均方根误差降低了 8.62%~50%；相较于

ORB-SLAM3，本文方法绝对轨迹误差的均方根误差降

低了 0~61.68%，相对轨迹误差的均方根误差降低了

3.63%~47.05%。特别是在具有显著弱纹理和结构化特

征的 f1_floor 序列中，ORB-SLAM2 和 ORB-SLAM3 均

出现了跟踪丢失现象。而本文方法在定位过程中能持

续跟踪，且定位轨迹和真实估计基本吻合。这得益于在

特征提取阶段融合了边缘感知能力更强的 EDLines 线

特征，缓解了在弱纹理场景下点特征数量不足的问题；

并且通过精匹配策略，提高了匹配精度，缓解了在结构

化场景中特征误匹配率较高的问题。

2) 低照度 TUM 数据集定量分析实验

为定量评估图像增强模块对视觉 SLAM 定位性能

的提升效果，对 8 组 TUM 序列进行线性变换和直方图

调整等处理，以模拟低照度条件，定位实验结果见表 4。

 

序列 图像增强前 图像增强后 图像增强前 图像增强后

L1

L2

L3

(a) ORB+GMS点特征匹配 (b) EDLines+比值测试线特征匹配

点特征 线特征 特征匹配对

图 7    图像增强前后特征匹配对比
Fig.7    Comparison of point and line feature matching before and after image enhancement

 

序列 图像增强前匹配结果 图像增强后匹配结果
匹配正确
率变化值/%

L1 +2.83

匹配正确率91.33% 匹配正确率94.16%

L2 +0.74

匹配正确率85.62% 匹配正确率86.36%

L3 +3.55

匹配正确率86.59% 匹配正确率90.14%

错误匹配 正确匹配

图 8    图像单应性变换后的 ORB+GMS 点特征匹配对比
Fig.8    Comparison of ORB+GMS-based point feature matching results post-homography transformation before and after image enhancement
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由实验结果可知，在进行图像增强后 8 组实验序列的定

位精度均得到明显提升。验证了具有边缘感知约束的

图像增强方法能够为视觉 SLAM 提供高质量的输入，

从而获得更准确的定位结果。

 
 

表 4    低照度条件下绝对轨迹误差和相对轨迹误差
Table 4    Absolute and relative trajectory errors under low illumination conditions 单位：m　

序列名

绝对轨迹误差 相对轨迹误差

本文方法未使用图像增强 本文方法 本文方法未使用图像增强 本文方法

均方根误差 平均值 均方根误差 平均值 均方根误差 平均值 均方根误差 平均值

f1_desk 0.014 0.012 0.011 0.009 0.013 0.008 0.011 0.008

f1_desk2 0.029 0.024 0.022 0.020 0.015 0.011 0.013 0.010

f1_floor 0.169 0.134 0.146 0.126 0.042 0.007 0.024 0.005

f1_room 0.081 0.075 0.070 0.063 0.013 0.009 0.010 0.008

f2_l_loop 0.214 0.202 0.081 0.071 0.099 0.046 0.038 0.020

f3_ns_far 0.095 0.047 0.042 0.036 0.091 0.044 0.036 0.029

f3_s_t_far 0.008 0.007 0.006 0.005 0.009 0.008 0.006 0.005

f3_s_t_near 0.009 0.009 0.008 0.007 0.008 0.007 0.007 0.006

 

3)TUM 数据集定性分析实验

部分序列的轨迹误差图如图 9 所示。其中，定位轨

迹和真实轨迹间的红色区域表示误差，实验结果表明，

本文方法整体红色区域相较于 ORB-SLAM2 和 ORB-
SLAM3 更小，说明本文方法的定位轨迹更接近相机真

实轨迹，定位结果更准确，性能更好。
 

 

表 2    绝对轨迹误差
Table 2    Absolute trajectory errors

序列名
ORB-SLAM2 ORB-SLAM3 本文方法 本文方法均方根误差降低百分比/%

均方根误差/m 平均值/m 均方根误差/m 平均值/m 均方根误差/m 平均值/m 相比ORB-SLAM2 相比ORB-SLAM3

f1_desk 0.019 0.016 0.018 0.016 0.016 0.013 15.78 11.11

f1_desk2 0.025 0.022 0.024 0.022 0.024 0.021 4 0

f1_floor --- --- --- --- 0.166 0.142 --- ---

f1_room 0.044 0.039 0.107 0.099 0.041 0.038 6.81 61.68

f2_l_loop 0.143 0.110 0.206 0.146 0.093 0.084 34.96 54.85

f3_ns_far 0.080 0.064 0.075 0.061 0.071 0.057 11.25 5.33

f3_s_t_far 0.013 0.011 0.012 0.010 0.008 0.007 38.46 33.33

f3_s_t_near 0.011 0.010 0.010 0.009 0.009 0.008 18.18 10

　　注：“---”表示该算法在该序列中出现跟踪丢失，无法进行比较。

 

表 3    相对轨迹误差
Table 3    Relative trajectory errors

序列名
ORB-SLAM2 ORB-SLAM3 本文方法 本文方法均方根误差降低百分比/%

均方根误差/m 平均值/m 均方根误差/m 平均值/m 均方根误差/m 平均值/m 相比ORB-SLAM2 相比ORB-SLAM3

f1_desk 0.019 0.015 0.017 0.013 0.013 0.010 31.57 23.52

f1_desk2 0.019 0.015 0.018 0.014 0.017 0.012 10.52 5.55

f1_floor --- --- --- --- 0.035 0.007 --- ---

f1_room 0.022 0.016 0.022 0.015 0.012 0.009 45.45 45.45

f2_l_loop 0.058 0.034 0.055 0.032 0.053 0.031 8.62 3.63

f3_ns_far 0.076 0.052 0.089 0.056 0.052 0.035 31.57 41.57

f3_s_t_far 0.018 0.016 0.017 0.015 0.009 0.007 50 47.05

f3_s_t_near 0.013 0.011 0.012 0.009 0.008 0.007 38.46 33.33

　　注：“---”表示该算法在该序列中出现跟踪丢失，无法进行比较。
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5.3.2    井下实景数据定位实验

为进一步检验本文方法在煤矿井下实景场景中的

定位性能和泛化能力，分别在井下水泵房段和井下综采

面段进行实验。

1) 井下水泵房段实景定位实验

图 10 展示了井下水泵房段区域的实际场景，其中

包含弱纹理和结构化特征区域。在数据采集过程中，相

机沿着图 10a 中 AB 段匀速直线运动。
  

A

B

(a) 采集初始位置 (b) 采集终止位置

图 10    井下水泵房段场景
Fig.10    Scenes of the underground water pump room

 

图 11b 为井下水泵房段实景实验定位轨迹。数据

采集过程中相机高度保持恒定，因此，仅展示二维轨迹

图。由结果可知，ORB-SLAM2 和 ORB-SLAM3 算法

在持续定位大约 3 m 后便丢失定位。而本文方法未出

现定位丢失现象，不仅能保持稳定的持续定位，而且定

位轨迹也更接近相机运动参考轨迹。

2) 井下综采面段实景定位实验

图 12 展示了井下综采面段区域的实际场景，其中

包含低照度和复杂纹理区域。在数据采集过程中，相机

同样沿着图 12a 中 AB 段匀速直线运动。

图 13b 为井下综采面段实景实验定位轨迹。实

验结果显示，ORB-SLAM2 和 ORB-SLAM3 算法轨迹

基本重叠(如紫色箭头所指的局部放大图所示)，均持

续定位大约 1 m 后便丢失定位。本文方法不仅能够

持续定位，而且定位轨迹也与相机运动参考轨迹保持

一致。
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图 9    部分序列轨迹误差
Fig.9    Trajectory error of partial sequences
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(b) 定位轨迹

图 11    井下水泵房段定位实验
Fig.11    Localization experiment results of the underground water

pump room

 

A

B

(a) 采集初始位置 (b) 采集终止位置

图 12    井下综采面段场景
Fig.12    Scenes of a segment of the underground fully mechanized

mining face
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6    结 论

(1) 提出了一种基于边缘感知增强的煤矿井下视

觉 SLAM 方法。该方法能够有效提高视觉 SLAM 在

煤矿井下特征退化场景中的性能和鲁棒性。

(2) 构建了边缘感知约束的自适应图像增强模块，

有效增强了煤矿井下低光照和不均匀光照环境下的图

像质量，提升了特征的可检测性；构建了边缘感知增强

的特征提取与匹配模块，显著提升了视觉 SLAM 在井

下弱纹理和结构化场景中的特征提取与匹配性能。

(3) 在 TUM 数据集和煤矿井下实景数据集中与

ORB-SLAM2、ORB-SLAM3 进行对比实验，本文方法

在 TUM 数据集上的绝对轨迹误差和相对轨迹误差的

均方根误差相较于 ORB-SLAM2 和 ORB-SLAM3 分别降

低了 4%~38.46% 和 8.62%~50%，0~61.68% 和 3.63%~
47.05%；在煤矿井下实景实验中，本文方法的定位轨迹

相较于 ORB-SLAM2 和 ORB-SLAM3 更接近相机的运

动参考轨迹。

(4) 尽管本文方法在煤矿井下特征退化场景中具有

较好的性能和泛化能力，并且在煤矿井下实景环境中也

具有一定的适用性，但由于引入了计算复杂的线特征和

特征精匹配策略，计算复杂度有所增加。未来的研究将

聚焦于进一步提升特征提取与匹配效率，引入新型后端

优化策略，提升方法的整体性能。 

符号注释：
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数； 为梯度域引导滤波器； 为该像素点处灰度值；

、 为当前图像帧和相邻下一图像帧； 为能

量梯度函数； 为引导图像；Gi 为引导图像中的第 i 个
图像块； 为特征匹配对最近邻距离； 为特征匹配对

次近邻距离； 为色调通道图像； 为单应性变换矩阵；

为像素索引； 为线性参数； 为亮度通道图

像； 为增强后的亮度通道图像； Ii 为亮度通道图像第

i 个图像块； 为像素索引； 为反射分量；

为优化后的反射分量； 为光照分量； 为优化后的光

照分量； 为图像总像素个数； 为图像大小； 为尺

度数； 为图像某个灰度级出现的概率； 为三维空间

线段端点的投影点； 为图像帧中线特征的端点； 为

的齐次坐标； 为三维空间点的坐标； 为 在图

像帧 上的投影坐标； 为 在图像帧 上的投影

坐标； 为轨迹估计位姿； 为引导滤波输出图像； 为

三维空间线段端点的投影点； 为图像帧中线特征的

端点； 为 的齐次坐标； 为真实轨迹位姿； 为尺度

参数； 为旋转矩阵； 为估计位姿到真实位姿的刚体

变换矩阵； 为饱和度通道图像； 为平移矩阵； 为

方差函数； 为滤波窗口； 为常数； 为比值测试匹配

算法的预设阈值； 为每个尺度的加权系数 ；

为边缘感知约束项； 为比值测试匹配结果； 为

固定时间间隔； 为比值测试匹配算法的正确匹配结果；

为比值测试匹配算法的错误匹配结果； 为惩罚系数；

为点特征重投影误差； 为线特征重投影误差；

为点线特征联合重投影误差； 为边缘感知约束项；

为引导图像 在 邻域内的方差和以 为半径的

滤波窗口内方差的乘积； 为引导图像 以像素 为

中心， 窗口内第 个像素点与像素点 的方差；

和 分别为 的均值和最小值； 为输

入图像的尺寸。
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